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tIn the 
ontext of extra
ting maximal item sets and asso
iation rules from a binarydata base, the graph-theoreti
 notion of domination was re
ently used to 
hara
-terize the neighborhood of a 
on
ept in the 
orresponding latti
e.In this paper, we show that the notion of domination 
an in fa
t be extended toany 
losure operator on a �nite universe and be eÆ
iently en
oded into propositionalHorn fun
tions. This generalization enables us to endow notions and algorithmsrelated to Formal Con
ept Analysis with Horn minimization and minimal 
overs offun
tional dependen
ies in Relational Databases.1 Introdu
tionThe massive amounts of data whi
h are 
urrently being a

umulated world-wide make it important to �nd fast algorithms to sift through the databases,or new te
hniques to avoid s
anning the whole base. One of the approa
hesis to fa
torize the data, in order to minimise the size o

upied by relevantinformation as well as the time required for sear
hes.In this data mining 
ontext, re
ent works by Wille (32) and Ganter (17) useFormal Con
ept Analysis to investigate 
on
epts, whi
h are maximal re
tan-gles of a binary relation and 
orrespond to a maximal fa
torization of itemsets; this is used in a 
ombinatorial approa
h for extra
ting patterns from adatabase. Con
ept latti
es stem from Galois latti
es, whi
h have been studiedfor a long time (7), for example in the 
ontext of So
ial S
ien
es (1), but Willeand Ganter's work has introdu
ed new perspe
tives and appli
ations. The usePreprint submitted to Elsevier S
ien
e 12 O
tober 2004



of 
on
ept latti
es is rapidly emerging in many areas related to Arti�
ial In-telligen
e and Data Mining, su
h as Database Management (see e.g. (23)),organization of obje
t hierar
hies (see e.g. (22)), ma
hine learning (see e.g.(26)) and frequent set generation (see e.g. (19)).Equally important, the related problem of rule generation, whi
h 
orrespondsto �nding fun
tional dependen
ies in databases, is of major importan
e in dataanalysis, for wide-spread appli
ations su
h as behavioral predi
tion, arti�
ialintelligen
e, modelization of genomi
 phenomena, and so forth. Re
ent workhas been done by Maier (25) in the theory of Relational Databases to de�nea minimal set of fun
tional dependen
ies and simultaneously by Guigues andDuquenne (20) in Formal Con
ept Analysis to de�ne a 
anoni
al basis of ex-a
t asso
iation rules. Mathemati
al investigation has shown that 
on
epts aswell as rules are asso
iated with several mutually in
lusive 
losure latti
es.These latti
es are potentially of exponential size, and as there may be evenmore rules than there are 
on
epts, eÆ
ient algorithmi
 te
hniques are a
-tively being sought to deal with these problems. An interesting breakthroughwas initiated by Bordat (8) when remarking that in order to generate theneighbors of a given 
on
ept in the latti
e, no information on other 
on
eptsis required. However, state of the art rule generation algorithms require, inorder to generate one rule, information on all previously generated rules, a setwhi
h it is not always feasible to handle.Our general purpose in this mathemati
al-oriented paper is to study variousrelationships between di�erent formal approa
hes, in view of using mathe-mati
al and/or algorithmi
 results whi
h stem from various �elds of dis
retemathemati
s. Several approa
hes have been proposed very re
ently in this di-re
tion. The Rough Set approa
h explored the relationships between fun
tionaldependen
ies and mining of prime impli
ants of dis
ernability fun
tions. Dis-
ernability fun
tions are based on approximation operators whi
h are spe
ial
ases of disjun
tive 
losure operators. SanJuan in (31) used Heyting algebrasto modelize and generalize this 
on
ept of approximation operators. In the�nite 
ase, Bio
h and Ibaraki in (6) use generalized monotone Boolean fun
-tions for the same purpose. However, all the algebrai
 stru
tures de�ned todeal with approximation operators are based on distributive latti
es. On theother hand, fun
tional dependen
ies indu
e general (i.e. not ne
essarily dis-jun
tive) 
losure operators and arbitrary latti
es, as the 
lass of Horn fun
tionsin Logi
al Analysis of Data and Galois Latti
es in Formal Con
ept Analysis.The Rough Sets and Formal Con
ept Analysis approa
hes are 
ompared in(30).In this paper, we fo
us on general �nite 
losure operators and their underlying�nite latti
es. Berry and Sigayret in (3) proposed a representation of a 
on
eptlatti
e by a graph, where the graph-related notions of domination and max-mods were used, as well as that of minimal separation. Bordat's results (8)2



were explained and extended, the 
over of a 
on
ept 
hara
terized using onlylo
al information. This work established a relationship between graph theoryand 
on
ept latti
es, and was rewarded by immediate algorithmi
 results interms of 
on
ept generation analysis at least as good as that of the best su
halgorithms (5).In this paper, we show that we 
an extend the notion of domination to any
losure operator de�ned on a �nite universe U . This develops into new inter-esting algorithmi
 approa
hes for generating latti
es related to impli
ationalsystems or 
anoni
al 
overs of fun
tional dependen
ies in Relational Database.The paper is organized as follows: Se
tion 2 gives preliminaries on Galois and
on
ept latti
es, Se
tion 3 explains previous work on the relationship betweengraphs and latti
es, Se
tion 4 extends the 
orresponding results to a general
losure system, Se
tion 5 interprets our results from Se
tion 4 in a logi
al-based fashion, and Se
tion 6 deals with the logi
al aspe
ts of rule generation.2 PreliminariesWe will �rst give some preliminaries on binary relations and the asso
iatedlatti
e. In this �eld, there are two main approa
hes with many notions in
ommon: Galois latti
es and 
on
ept latti
es. We will present both aspe
tsin this preliminary se
tion, although in the rest of the paper we will refer to
on
ept latti
es.2.1 Maximal re
tangles, 
ontexts and 
on
eptsGiven a �nite set P of "properties" or "attributes" (whi
h we will denote bylower
ase letters) and a �nite set O of "obje
ts" or "tuples" (whi
h we willdenote by numbers), we will 
onsider a binary relation R as a proper subset ofthe Cartesian produ
t P�O; we will refer to the triple (P;O; R) as a 
ontext.Given a subset X of P and a subset X 0 of O, the set R \ (X � X 0) is asubrelation of R, whi
h we will denote by R(X;X 0).De�nition 2.1 Given a 
ontext C = (P;O; R), a 
on
ept or 
losed set ofC, also 
alled a maximal re
tangle of R, is a subprodu
t A�B � R su
h that8x 2 O � B; 9y 2 A j (y; x) 62 R, and 8x 2 P � A; 9y 2 B j (x; y) 62 R. A is
alled the intent of the 
on
ept, B is 
alled the extent.Example 2.2 Binary relation R for our running example:3



Property set:P = fa; b; 
; d; e; f; g; hgObje
t set:O = f1; 2; 3; 4; 5; 6gR � P �R
R a b 
 d e f g h1 � � � �2 � � � � �3 � � � � �4 � �5 � � �6 � �In this relation, ah � 236 and b
 � 125 are maximal re
tangles (or 
on
epts)of R. b
 is the intent of re
tangle b
� 125, and 125 its extent.2.2 Con
ept latti
esA latti
e is a partially ordered set in whi
h every pair fX; Y g of elementshas both a lowest upper bound (denoted by join(X; Y )) and a greatest lowerbound, (denoted by meet(X; Y )). We represent a latti
e by the Hasse diagramof the partial ordering on the elements: transitivity and re
exivity edges areomitted. The reader is referred to the 
lassi
al work of (7) for basi
 results onlatti
es. An element Y is said to 
over an element X if X < Y and there isno intermediate element Z su
h that X < Z < Y . The set of elements whi
h
over an element X is 
alled the 
over of X.Given a 
ontext C = (P;O; R), the 
on
epts of C, ordered by in
lusion onthe intents, de�ne a latti
e, 
alled a Galois latti
e or 
on
ept latti
e, whi
h isusually represented with an ordering on the intents from bottom to top. Wewill denote this latti
e by L(R). An element B�B0 is said to be a des
endantof element A � A0 if A � B. B � B0 is said to 
over (to be a su

essor of)A� A0 if A � B and there is no element C � C 0 su
h that A � C � B.This latti
e may be of exponential size, as it may s
an the power set of P or ofO. Su
h a latti
e, sometimes referred to as a 
omplete latti
e, has a smallestelement, 
alled the bottom element, and a greatest element, 
alled the topelement. The elements whi
h 
over the bottom element are 
alled atoms.This latti
e has spe
ial properties:Property 2.3 Ea
h element X is the bottom element of a sublatti
e whi
h
ontains its des
endants.Property 2.4 (5) For ea
h element x 2 P, the subset of elements 
ontaining4



x de�nes a sublatti
e of L(R); we will 
all the bottom element of this sublatti
ethe introdu
er of x.Example 2.5 The latti
e L(R) of relation R in Example 2.2 is given in Fig-ure 1. In elements whi
h are introdu
ers of a property, this property is rep-resented in bold. The atoms of L(R) are: ah � 236, b � 1235 and d � 145.The introdu
er of 
 is element b
� 125. The sublatti
e de�ned by the elements
ontaining 
 is given in Figure 2.

φ   x 123456

ab h x 23

  x 1235

b  x 125

abcgh x 2ab gh x 3

abcdefgh x φ

bcde x 1

bcd x 15

d  x 14

  x 145   x 236ah
b

d

c

e

f

g

Fig. 1. Con
ept latti
e L(R) of relation R of Example 2.2. In elements whi
h areproperty introdu
ers, the introdu
ed properties are represented in bold.
abcdefgh x φ

abcgh x 2

bcde x 1

bc x 125

bcd x 15

Fig. 2. Sublatti
e of the elements 
ontaining 
 of latti
e L(R) of Figure 1.3 Relationships between domination and 
on
epts3.1 An underlying graphOur approa
h to handling a 
on
ept latti
e (see (3)) is to en
ode the relationby an underlying graph GR, 
onstru
ted on the 
omplement of the relation,5



de�ned, for a given 
ontext (P;O; R) as GR = (V;E), with V = P [ O, andwith edges de�ned as:(1) internal edges whi
h make P and O into 
liques (xy 2 E if x; y 2 P or ifx; y 2 O).(2) external edges: for x 2 P and y 2 O, xy 2 E i� (x; y) =2 R.Example 3.1 Figure 3 gives the graph whi
h 
orresponds to the relation fromExample 2.2.
a
b
c
d
e
f
g
h 6

5

4

3

2

1

Fig. 3. Graph GR 
oding relation R from Example 2.2.The reason we de�ne this graph is that we have the remarkable property that avertex set S of GR is a minimal separator of GR, separating 
onne
ted 
ompo-nent A from 
onne
ted 
omponent A0 if and only if A�A0 is a 
on
ept de�nedby relation R (see (3) for details on minimal separators and this relationship).This leads to interesting results, be
ause mu
h re
ent work on graphs has beendone on minimal separation, with results on eÆ
ient separator generation andon separator de
omposition.Although in this paper we do not need to go into details about these graphresults, we will use some vo
abulary su
h as `neighborhood', `domination' and`maxmods' whi
h stems from graph theory; we thus usually denoted by N+(x)the external neighborhood of vertex x in graph GR: for x 2 P; N+(x) = fy 2Oj(x; y) 62 Rg, and for x 2 O; N+(x) = fy 2 Pj(y; x) 62 Rg.In this paper, we will only need to use the neighborhood of the 
omplement,thus, instead of the graph notation N+(X), we will use notation R[X℄:De�nition 3.2 Given a 
ontext (P;O; R), for any subset X of P or O, wewill de�ne:� R[X℄ = fy 2 O : 8x 2 X; (x; y) 2 Rg if X � P,� R[X℄ = fy 2 P : 8x 2 X; (y; x) 2 Rg if X � O.We will denote R[R[X℄℄ by R2[X℄. R[fxg℄ will be denoted R[x℄ for short.Using this notation, we 
an des
ribe the maximal re
tangles as: R2[X℄�R[X℄,for X � P. 6



3.2 Domination and maxmods in a 
ontextA 
on
ept A� A0 is uniquely de�ned by its intent A, sin
e A0 = R[A℄; in therest of this se
tion, we will a

ordingly refer only to intents, i.e. to subsets ofP.One of the related graph notions whi
h turns out to be of primary importan
efor the study of 
on
ept latti
es is that of vertex domination: in a graph, avertex x is said to dominate another vertex y if N+(y) � N+(x). In this paper,we will transpose this de�nition using notation R[ ℄:De�nition 3.3 Let (P;O; R) be a 
ontext, let x; y be in P; we say that xdominates y if R[x℄ � R[y℄Example 3.4 In our example, R[fb; 
g℄ = f1; 2; 5g.In (3) domination is used to de�ne a pre-order on P. With this pre-order areasso
iated equivalen
e 
lasses 
alled maxmods (a short for the graph term'maximal 
lique module'), whi
h led to the quotient order of this pre-orderde�ning domination between maxmods:De�nition 3.5 (3) Let (P;O; R) be a 
ontext; we will say that X � P is amaxmod of R if 8x; y 2 X;R[x℄ = R[y℄ and X is maximal for this property.We say that a maxmod X dominates a maxmod Y 6= X if R[X℄ � R[Y ℄.Property 3.6 (3) Let X and Y be maxmods; then X � Y i� Y dominatesX. Domination between maxmods de�nes a partial order.Example 3.7 In Example 2.2, the maxmods are: fa; hg, fbg, f
g, fdg, feg,ffg and fgg. fbg is a non-dominating maxmod; f
g dominates fbg; fdg isnon-dominating; feg dominates fdg; fa; hg is non-dominating; fgg dominatesfa; hg and fbg; ffg dominates fa; hg, fbg and fgg.The maxmods 
an be 
omputed in O(jP [ Oj � jRj) time (see (3)).One of the ways of 
omputing the partition into maxmods is to use a partitionre�nement te
hnique, based on a famous graph algorithm 
alled LexBFS (29)whi
h was originally designed to re
ognize 
hordal graphs: start with P andrepeatedly 
hoose an obje
t i, and use R[i℄ to split the 
lasses of the 
urrentpartition into neighbors and non-neighbors of i; if at ea
h step the sub
lass ofelements in R[i℄ is put to the left of the sub
lass of non-elements, then at theend, a partition into maxmods is obtained, with the interesting property thata given maxmod X 
an dominate only maxmods whi
h lay to the left of X inthe partition. This pro
ess is des
ribed in detail in (5).7



Example 3.8 Figure 4 illustrates the partition re�nement based on LexBFSfrom Example 2.2.The ordered partition into maxmods obtained is (fbg, f
g, fdg feg fahg fggffg). With Example 3.7 we 
an verify that a maxmod dominates no maxmodwhi
h is after it in this list.Properties 
an be used in a similar fashion to split the partition, this timeusing the intent of the introdu
er 
orresponding to a given property, as shownin Figure 5. ab
defgh# R[1℄ = fb; 
; d; egb
de j afgh# R[2℄ = fa; b; 
; g; hgb
 j de j agh j f# R[3℄ = fa; b; f; g; hgb j 
 j de j agh j f# R[4℄ = fd; egb j 
 j de j agh j f# R[5℄ = fb; 
; dgb j 
 j d j e j agh j f# R[6℄ = fa; hgb j 
 j d j e j ah j g j fFig. 4. Partition re�nement based on LexBFS (see Example 3.8).The maxmods turn out to be 
losely related to the introdu
ers: the partialordering on maxmods has the same stru
ture as the suborder de�ned by the
on
ept latti
e restri
ted to the introdu
ers.Property 3.9 (4) A 
on
ept with intent A � P is an introdu
er i� there is amaxmod X � P su
h that X � A and A�X is the union of all the maxmodsdominated by X.A similar result holds for extents and obje
t maxmods.Example 3.10 Figure 6 gives the domination ordering on maxmods 
orre-sponding to the relation of Example 2.2. Con
ept abgh � 23 is the introdu
erof g. fgg is a maxmod and dominates fa; hg and fbg. Con
ept abfgh � 3 isthe introdu
er of f . ffg is a maxmod and dominates fgg, fa; hg, and fbg.8



ab
defgh# a : fa; hgah j b
defgh# b : fbgah j b j 
defg# 
 : fb; 
gah j b j 
 j defg# d : fdgah j b j 
 j d j efg# e : fd; egah j b j 
 j d j e j fg# f : fa; b; f; g; hgah j b j 
 j d j e j fg# g : fa; b; g; hgah j b j 
 j d j e j g j f# h : fa; hgah j b j 
 j d j e j g j fFig. 5. Partition re�nement based on the intents of the introdu
ers (see Exam-ple 3.8).
f

g

d

c

b{a,h}

e

Fig. 6. The domination ordering on maxmods for Relation R from Example 2.2.This ordering has interesting appli
ations: when the number of elements of thelatti
e is exponential, several authors ((18), (13), (22)) have found it usefulto further simplify this latti
e into a Galois subhierar
hy, by using the sub-order indu
ed by the introdu
ers (using introdu
ers for both properties andobje
ts), whi
h has a polynomial number of elements; its properties have beeninvestigated in several appli
ations su
h as UML representations and handlingobje
t-oriented hierar
hies. In (4), Berry and Sigayret show how to eÆ
iently9



maintain su
h a subhierar
hy by de
omposing it into two partially orderedsets of introdu
ers: one for introdu
ers of properties and one for introdu
ersof obje
ts.Bordat in (8) used the fa
t that, for any 
on
ept A � A0, the sublatti
e ofwhi
h A� A0 is the bottom element is isomorphi
 to the 
on
ept latti
e of asubrelation of R:Theorem 3.11 Let (P;O; R) be a 
ontext, let A � A0 be a 
on
ept. The el-ements whi
h 
ontain A in their intent de�ne a sublatti
e of L(R) whi
h isisomorphi
 to the latti
e of relation R(P�A;A0). We will refer to R(P�A;A0)as Bordat's subrelation related to A.We use the notion of maxmod and the results from (8) to present the followingtheorem, whi
h uses the Bordat's subrelation to de�ne the 
over of an arbitraryelement of the latti
e.Theorem 3.12 (3) Con
ept B � B0 
overs a 
on
ept A � A0 i� B � A is anon-dominating maxmod in R((P � A); R[A℄).This is algorithmi
ally interesting, be
ause it enables a lo
al approa
h. How-ever, when generating all the 
on
epts, the idea that domination is inheritedas one moves up in the latti
e avoids a 
omplete re-
omputation of the domi-nation order, thus yielding an interesting time and spa
e 
omplexity (5):Property 3.13 Let A and B be 
on
epts, with A � B, let x and y be proper-ties whi
h are not in B. Then if x dominates y in Bordat's subrelation relatedto element A, x also dominates y in Bordat's subrelation related to elementB.4 General 
losure systemsIn the previous se
tion, we have dis
ussed various aspe
ts of a 
on
ept lat-ti
e. However, in several appli
ations, other latti
es are used, for example fordealing with fun
tional dependen
ies in databases; another su
h appli
ationis rule generation, whi
h, as we will see in Se
tion 6, is asso
iated with twodi�erent superlatti
es of the 
on
ept latti
e.Thus, a more general de�nition of latti
es built on a family of subsets of proper-ties, attributes, or, more generally, on a family of subsets of any �nite universeU is needed. This 
orresponds to 
losure systems, whi
h we will dis
uss in thisse
tion. We will see that the notion of domination between maxmods 
an beusefully extended to this more general 
ase.10



4.1 Preliminary notions on 
losure systemsDe�nition 4.1 A unary operator ' on a universe U is 
alled a 
losure oper-ator on U if for A;B � U :(1) A � '(A) (extensivity)(2) '('(A)) = '(A) (idempoten
e)(3) if A � B, then '(A) � '(B) (isotony)A subset A of U is said to be 
losed if '(A) = A.Property 4.2 Let (P;O; R) be a 
ontext. R2 is a 
losure operator on P.De�nition 4.3 Given a family E of subsets of a �nite set U , the 
losure byinterse
tion E� of E is de�ned indu
tively as follows:(1) U and every element of E are in E�.(2) If X and Y are in E�, then X \ Y is in E�.Example 4.4 Let U = fa; b; 
; d; e; fg, let E = ffa; 
; d; e; fg; fb; d; e; fg;fa; 
; dg; fa; 
; egg. Then E� = E [ fU; fd; e; fg; fdg; feg; fa; 
g; ;g.De�nition 4.5 A family F of subsets of a �nite set U is said to be a 
losuresystem or a Moore family if: 8 E � F , (TX2E X) 2 F .Ea
h 
losure operator ' on U 
an be asso
iated with the family F' = f'(A) :A � Ug, whi
h is a 
losure system su
h that for any A � U , '(A) is thesmallest element of F' whi
h in
ludes A. Conversely, ea
h 
losure systemF � 2U (where 2U is the power set of U) 
an be asso
iated with a 
losureoperator ' de�ned for any X 2 U by '(X) = T Y 2F ; Y�X YProperty 4.6 If F is a 
losure system, then (F ;�) is a latti
e with top ele-ment U .Example 4.7 The latti
e asso
iated with the 
losure system given in Example4.4 is given in Figure 7.From this latti
e stem the notions of 
over and atom:De�nition 4.8 Given a 
losure operator ' on U , and the 
orresponding 
lo-sure system F'.A 
losed set B is said to 
over a 
losed set A in F' if A � B and there is no
losed set C su
h that A � C � B.B is said to be an atom of F' if it 
overs the 
losed set '(;).Thus, B 
overs A if for any X � U , (A � X � B)) '(X) = B.11



abcdef

bdef acdef

def

φ

e acd

acd ace

Fig. 7. Latti
e asso
iated with the 
losure system de�ned in Example 4.4.The following property links the notion of 
overs and atoms and will be usedto generalize Theorem 3.12 and re
ursive approa
hes to generating latti
es of
losed sets.Property 4.9 Let ' be a 
losure operator on a �nite set U . For every 
losedset A 2 F', the map 'A : X�U 7! '(X [A) is a 
losure operator on U su
hthat for every 
losed set B 2 F', B 
overs A i� B is an atom of F'A.PROOF. 'A is 
learly a 
losure operator on U : for every X�U ,(1) X�'A(X), sin
e X�X [ A�'(X [ A) = 'A(X),(2) if X � Y then 'A(X)�'A(Y ), sin
e 'A(X) = '(X [ A)�'(Y [ A) ='A(Y ),(3) 'A('A(X)) = 'A, sin
e:'A('A(X))='('(X [ A) [ A)='('(X [ A)) sin
e A�'(X [ A)='A(X)Let us now show that B 
overs A i� B is an atom of F'A.If B 
overs A in F', then A � B. Moreover, for any X � B;X 6= ;, we have'A(X) = '(X [ A) = B, sin
e A � X [ A�B. Thus, B 
overs 'A(;) and
onsequently is an atom of F'A.Conversely, if B is an atom of F'A then B 
overs 'A(;) = '(A).12



4.2 Extending domination to a 
losure systemWe will now explain how we 
an extend the results from Se
tion 3 from R2 toan arbitrary 
losure operator.We have seen in Se
tion 3.2 that by virtue of Theorem 3.12, it is possibleto 
ompute the 
over of any element of the latti
e by simply restri
ting therelation and by 
omputing the 
orresponding minimal elements of the orderde�ned by the maxmods. This is based on Bordat's subrelation, but sin
e inthis more general 
ontext no relation is given to work with, we will need tode�ne domination as related to a given 
losed set A.De�nition 4.10 Given a 
losure operator ' and a 
losed set A, we will de�nea binary relation on U � A, whi
h we will denote by dom'(A), by setting forany x; y 2 U � A:(x; y) 2 dom'(A)() y 2 '(A [ fxg)We will say that x dominates y in A.This extension of the notion of domination as studied in Se
tion 3 preservesmany of the original results: for any 
losed set A, dom'(A) is a pre-order (i.e.dom'(A) is re
exive and transitive). As a result, U � A 
an be partitionedinto equivalen
e 
lasses whi
h we will 
all maxmods; this results in a quotientorder, whi
h is a partial order on the maxmods.Clearly, a subset M � U � A is a maxmod of dom'(A) if and only if it is amaximal set su
h that for any x 2 M , M � '(A [ fxg).The notion of domination is naturally extended to maxmods:De�nition 4.11 We denote by Dom'(A) the binary relation de�ned on themaxmods of dom'(A): for X; Y � U � A(X; Y ) 2 Dom'(A)() (9x 2 X)(9y 2 Y ) (x; y) 2 dom'(A)We will say that maxmod X dominates maxmod Y .Let us remark that the existential quanti�ers in previous de�nition 
an berepla
ed by universal quanti�ers:(X; Y ) 2 Dom'(A)() (8x 2 X)(8y 2 Y ) (x; y) 2 dom'(A)13



In the rest of this paper the relation dom'('(;)) (Dom'('(;)) resp.) will bedenoted in short by dom' (Dom' resp.).The notion of introdu
er also extends to 
losure systems:De�nition 4.12 For x 2 U , '(fxg) is 
alled the introdu
er of x.It is easy to see that this de�nition, when applied to R2, is the same as the onegiven in Se
tion 3. In fa
t, for the latti
es de�ned by 
losure systems, for ea
helement x 2 U , the subset of elements 
ontaining x de�nes a sublatti
e, thebottom element of whi
h is 
alled the introdu
er of x. This 
an be extendedto de�ning the introdu
er of a maxmod:Property 4.13 Ea
h maxmod X of dom' de�nes an introdu
er '(X) whi
his :'(X) = S fY : (X; Y ) 2 Dom'g.PROOF. If M�U is a maxmod of dom', then for any x 2M , M�'(fxg).Sin
e ' is an isotone operator, '(fxg) � '(M) � '(fxg); thus '(M) is theintrodu
er of x.Moreover, for any y 2 U su
h that (x; y) 2 dom', '(fyg)�'(fxg) = '(M).This shows that: SfY : (M;Y ) 2 Dom'g � '(M). The 
onverse in
lusionfollows by minimality of M .Example 4.14 Let us 
onsider the 
losure system from Example 4.4; letus 
ompute the domination relation with respe
t to the bottom element ; ofthe asso
iated latti
e shown in Figure 7. '(a) = fa; 
g; '(b) = fb; d; e; fg;'(
) = fa; 
g; '(d) = fdg; '(e) = feg; '(f) = fd; e; fg. By de�nition,(x; y) 2 dom'(A) i� y 2 '(A [ fxg), here with A = ;. The elements of dom'are: (a; a), (b; b), (
; 
), (d; d), (e; e), (f; f), (a; 
), (b; d), (b; e), (b; f), (
; a),(f; d), (f; e). So a dominates 
 and 
 dominates a; b dominates f , and f dom-inates d and e. Maxmods: fa; 
g; fbg; fdg; feg; ffg. Non-dominating maxmods(whi
h are thus atoms): fa; 
g; fdg and feg. Other maxmods (whi
h also de-�ne introdu
ers): ffg whi
h de�nes introdu
er fd; e; fg, and fbg, whi
h de�nesintrodu
er fb; d; e; fg.In a fashion quite similar to that des
ribed in Se
tion 3, the partition intomaxmods 
an be 
omputed by using partition re�nement, as illustrated in thefollowing example.Example 4.15 Using the 
losure system from Example 4.4, Figure 8 givesthe details of the 
omputation of the partition into maxmods related to 
losedset ;. 14



The result is: fa; 
; dg is non-dominating, fdg and feg are non-dominating,ffg dominates fdg and feg,fbg dominates ffg, fdg and feg.To 
ompute the partition related to a 
losed set A, one would repla
e '(x) by'(fxg [ A) and use ea
h of the elements of U whi
h is not in A.ab
def# '(a) = fa; 
ga
 j bdef# '(b) = fb; d; e; fga
 j bdef# '(
) = fa; 
ga
 j bdef# '(d) = fdga
 j d j bef# '(e) = fd; e; fga
 j d j e j bf# '(f) = fd; e; fga
 j d j e j f j bFig. 8. Partition re�nement into maxmods from Example 4.4 (see Example 4.15).Using De�nition 4.11, we 
an now reformulate Theorem 3.12 into a generalstatement:Theorem 4.16 Given a 
losure operator ' on a �nite set U , and two 
losedsets A;B, then B 
overs A i� A�B and B�A is a non-dominating maxmodof dom'(A) (or, equivalently, a minimal element of Dom'(A)).PROOF. From Property 4.9, follows that a 
losed set B 
overs a 
losed setA if A is a proper subset of B and B is an atom of the 
losure system: F'A. ByProperty 4.13, B is a non-dominating maxmod of dom'A. For any x; y 2 U�A,we have the following equivalent statements:(x; y) 2 dom'A() y 2 'A(fxg)() y 2 '(A [ fxg)() (x; y) 2 dom'(A)Thus, B � A is a maxmod of dom'(A).The 
onverse proof is similar. 15



The inheritan
e me
hanisms also extend readily:Property 4.17 Let A and B be 
losed sets, with A � B, let x and y beelements of U whi
h are not in B. Then if x dominates y in A (i.e. (x; y) 2dom'(A)) , then x also dominates y in B (i.e. (x; y) 2 dom'(B)).PROOF. By de�nition of dom'(X), the following equivalen
es hold for any(x; y) 62 B:(x; y) 2 dom'(A)() y 2 '(A [ fxg)(x; y) 2 dom'(B)() y 2 '(B [ fxg)Moreover, A [ fxg�B [ fxg implies '(A [ fxg)�'(B [ fxg).Consequently, dom'(A) \ (U � B)2�dom'(B).Thus, even in this more general 
ontext, we are able, given a 
losure operator,to 
ompute the 
over of an element, with the same algorithmi
 advantages:possibility of a 
heap lo
al investigation of the latti
e, eÆ
ient re
ursive gen-eration of all 
losed sets, qui
k generation of all the introdu
ers.5 Logi
al representation of generalized dominationHorn fun
tions are used in relational databases theory (14) and logi
 program-ming (24). In order to eÆ
iently 
ompute generalized domination, we will nowsimilarly 
onsider Horn fun
tions asso
iated with 
losure operators.5.1 Preliminary notionsThis se
tion deals with Boolean fun
tions that map 2U into f0; 1g. Given su
ha Boolean fun
tion f , we 
all model (
ounter model resp.) any subset X�Usu
h that f(X) = 1 (f(X) = 0 resp.). We identify every x 2 U with theBoolean fun
tion su
h that x(X) = 1 i� x 2 X. f is said to be a literal iff = x or f = :x for some x 2 X. Literals of the form x are said to be positive,and negative otherwise.We now introdu
e the ne
essary notations and basi
 
on
epts on Horn fun
-tions whi
h we will need throughout the rest of this paper. We refer the readerto (21; 12; 9) for general statements and proofs of main results in this theory.16



A propositional 
lause is a �nite disjun
tion of literals that do not 
ontainboth a fun
tion x and its negation :x. A (proper) sub-disjun
tion of a 
lauseis 
alled a (proper) sub
lause. A 
lause is said to be a Horn 
lause if it has atmost one positive literal. The empty 
lause is the 
onstant Boolean fun
tion0. The set of negative literals of a 
lause is 
alled the support of this 
lause.A non-empty 
lause Wa2A :a with no positive literal is said to be negative,and is usually denoted by A!, or sometimes by A! U . A non-empty Horn
lause Wa2A :a _ b with exa
tly one positive literal b is said to be pure andwill be denoted by A! b. Moreover, we will sometimes write the 
onjun
tionVfA! b : b 2 B; b 62 Ag of a set of pure Horn 
lauses having the same supportA, simply as A! B.A set H of Horn 
lauses is said to be:� unsatis�able if VH = 0.� a Horn representation of f if VH = f ; f is then said to be a Horn fun
tion.� irredundant if for any proper subset H0 of H, VH0 6= VH.� equivalent to another set H0 of 
lauses if VH0 = VH.Finally, a 
lause g is an impli
ate of a Boolean fun
tion of f if f � g. Itis prime if no proper sub
lause is an impli
ate. We denote by Pf the set ofprime impli
ates of a given Boolean fun
tion f . It is well known that f isa Horn fun
tion if and only if Pf is a Horn representation of f . Any Hornrepresentation H of f su
h that H�Pf is said to be a prime representationof f .5.2 Horn fun
tions asso
iated with 
losure operatorsWe will now how we 
an asso
iate a Boolean fun
tion with a 
losure operator'.De�nition 5.1 Let ' be a 
losure operator on U ; we denote by f' the Booleanfun
tion that maps 2U onto f0; 1g de�ned by:f'(X) = 1()'(X) = X and X 6= UDe�nition 5.2 Let H be a set of 
lauses. We will denote by ABS(H) theminimal equivalent set of 
lauses obtained from H by dropping 
lauses byabsorption (i.e. by dropping all 
lauses that have a sub
lause in H).To 
larify the relationship between 
losure systems and prime impli
ates of aHorn fun
tion, we need to asso
iate a set of propositional Horn 
lauses withthe subsets of U . 17



De�nition 5.3 Let ' be a 
losure operator on U ; let A be a subset of U .Then A 
an be asso
iated with the following set of propositional Horn 
lausesH'(A):
H'(A)=8>>>>><>>>>>: fA!g if '(A) = UfA! b : b 2 '(A)� Ag if A � '(A) 6= U; otherwiseFor every X �2U , then H'(X ) is de�ned as the set of 
lauses:H'(X )=ABS [A2X H'(A)!We apply this to de�ne a Horn representation of f' and show the 
onne
tionwith Boolean fun
tions usually asso
iated with Fun
tional Dependen
ies intheory of Relational Databases (14).Lemma 5.4 For every 
losure operator ' on U , H'(2U) is a Horn represen-tation of f'.PROOF. The lemma follows from the following equivalent statements:(1) X is a 
ounter-model of f'.(2) X is a subset of U su
h that X 6= '(X) or X = U .(3) X is a 
ounter-model of VH'(2U)The last two statements are equivalent be
ause H'(2U) 
ontains either a sub-
lause of X! if '(X) = U , or a sub
lause of X! x for some x 2 '(X)�X.It is worth mentioning that this Horn representation of f' is not pure, as it
ontains negative 
lauses. Any Horn fun
tion on n variables 
an be en
odedinto a unique positive Horn fun
tion on n + 1 variables. We will not 
onsidersu
h translations in this paper, sin
e the positive 
omponent of Pf' plays animportant role in rule generation, as we will see in Subse
tion 6.3.Theorem 5.6 below 
hara
terizes the prime impli
ates of f'. It 
ould be de-du
ed from well-known results in relational databases (14) or Boolean analysis(16), But for the sake of self-
ontainment, we will give a dire
t proof.De�nition 5.5 Let ' be a 
losure operator on U , we denote by J' the familyof subsets X of U su
h that: 18



(1) X 6= '(X),(2) for any proper subset Y of X, '(Y ) 6= '(X).In the terminology of Relational Databases, an element J of J' su
h that'(J) = F 2 F' (i.e. '(J) is an element of 
losure system F') is 
alled agenerator of F . If F = U then J is said to be a key.Note that, by Item 1 of De�nition 5.5, J' \F' = ; and that, by Item 2, ea
hX in J' is a minimal element of fY � U : '(Y ) = '(X)g. Thus a subsetA�U is 
losed if and only if for any negative 
lause X! we have X 6�A, andfor any 
lause X! � 2 H'(J') su
h that X�A, we have � 2 A.Theorem 5.6 Let ' be a 
losure operator on U , then H'(J'[fU!g) is theset of prime impli
ates of f'.PROOF. First, we show that any 
lause of H'(J') is a prime impli
ate off'. By Lemma 5.4, sin
e H'(J')�H'(2U), H'(J') is a set of impli
ates off'. Let g 2 H'(J'). We 
onsider two 
ases:(1) Suppose g = J! is a negative 
lause of H'(J'). If J was not prime, wewould have J 0 � J su
h that f' � J 0!< J!.Sin
e J 2 J' and J 0 � J we have '(J 0) 6= U . Then '(J 0) is a model off' and a 
ounter-model of J 0!. This 
ontradi
ts the hypothesis that J 0is an impli
ate of f'. Thus no sub
lause of J ! is an impli
ate of f',whi
h shows that J! is prime.(2) Suppose g = J! j is a pure Horn 
lause of H'(J'). By absorption, wehave:j 2'(J)� [S�J;S2J' '(S)Let us suppose that there exists a proper sub
lause h of J ! j thatis an impli
ate. Therefore there exists J 0 � J su
h that h = J 0 ! j.Consequently, there exists K 2 J' with: K�J 0 � J su
h that j 2 '(K),whi
h 
ontradi
ts (1).Conversely, let h be a prime impli
ate of f'. Sin
e f' is a Horn fun
tion, h isa Horn 
lause. We again examine two 
ases:(1) If h is negative, h = A ! for some proper subset A of U . Then forany subset X � U su
h that A � X, f(X) = 0. Then '(A) = U and
onsequently A is a key in J'.(2) If h is pure, then h = A! a for some proper subset A of U and somea 2 U � A. Sin
e A! a is a prime impli
ate of f , f(A) = 0 and for anysubset X of U su
h that A � X, f(X) = 1 implies a 2 X. thus a 2 '(A)and A is a generator of '(A), as if A was not a generator, there would19



exist a proper subset A0 of A su
h that f � A0! a, whi
h 
ontradi
tsthe assumption that A! a is prime.Example 5.7 We will use the following relation, from (20)
P = fa; b; 
; d; egO = f1; 2; 3; 4g R a b 
 d e1 � �2 � �3 � � �4 � �The asso
iated Con
ept Latti
e is shown in Figure 9.Let us use the 
on
epts to de�ne a 
losure system on U = fa; b; 
; d; eg:F'= f;; fag; fbg; f
g; fdg; fa; bg; fa; 
g; fb; 
; dg; fd; eg; UgJ'= ffeg; fa; dg; fa; eg; fb; 
g; fb; dg; fb; eg; f
; dg; f
; eg; fa; b; 
ggH'(J')= ffa; dg!; fa; eg!; f
; eg!; fb; eg!; fa; b; 
g!;feg! d; fb; 
g! d; fb; dg! 
; f
; dg! bgf'=(:a _ :d) ^ (:a _ :e) ^ (:
 _ :e) ^ (:b _ :e)^(:a _ :b _ :
) ^ (:e _ d) ^ (:b _ :
 _ d) ^ (:b _ 
 _ :d)^(b _ :
 _ :d)

bcd
ab ac

a b c d

T

de

T

Fig. 9. Con
ept latti
e of the relation from Example 5.7.5.3 Horn representation of domination for 
losed setsWe will now translate the domination relations into logi
al form.20



De�nition 5.8 Let ' be a 
losure operator on U , X �2U , A�U , and (x; y)�(U � A)2. We will de�ne K'(X ; A; x; y) as the set of 
lauses:H'(X )[f! a : a 2 Ag[f! x; y!gTheorem 5.9 Let ' be a 
losure operator on U , H a Horn representationof f', A a 
losed set, and (x; y) 2 (U � A)2. Then (x; y) 2 dom'(A) i�K'(H; A; x; y) is unsatis�able.PROOF. From Lemma 5.4, we 
an dedu
e that H = H'(2U), and by de�ni-tion, (x; y) 2 dom'(A) i� y 2 '(A [ fxg).Clearly, we again have to 
onsider two 
ases:(1) '(A [ fxg) = U . In this 
ase, (x; y) 2 dom'(A) for every y 2 U � Aby de�nition of dom'(A). Moreover, there exists a least one sub
lause of(A [ fxg)! in H, thus H [ f! a : a 2 Ag�K'(H; A; x; y) is obviouslyunsatis�able for every y 2 U � A.(2) '(A [ fxg) 6= U . In this 
ase, if (x; y) 2 dom'(A), then a sub
lauseA [ fxg ! y is in H and K'(H; A; x; y) is unsatis�able. Conversely,if K'(H; A; x; y) is unsatis�able, then for any model M of f su
h thatA [ fxg�M , we have y 2M and therefore, y 2 '(A [ fxg).
As the Horn SAT problem 
an be solved in linear time (see, for example, (15)or (27)), we 
an dedu
e from Theorem 5.9 that dom'(A) 
an be 
omputedin O(jHj:jU � Aj2) time, for any 
losed set A. Moreover, we 
an supposethat H is an irredundant subset of H'(J'), sin
e an irredundant and primerepresentation of VH 
an be 
omputed in O(jHj2) time (21).Example 5.10 Let F' be the 
losure system de�ned in Example 5.7.H'(J') [ f! dg = f fa; dg !, fa; eg !, f
; eg !, fb; eg !, fa; b; 
g !,fb; dg! 
, f
; dg! b,! d g.and thus:� dom'(fdg) = f(b; 
); (
; b); (a; b); (a; 
); (a; e)g� Dom'(fdg) = f(fag; fb; 
g); (fag; feg)g� Cover of fdg: ffb; 
; dg; fd; egg 21



6 Closure systems asso
iated with rule generationOne of the most 
ru
ial problems in Data Mining using Formal Con
ept Anal-ysis is rule extra
tion. In Example 5.7, e will imply d, be
ause there is no 
on-
ept where e appears without d. Finding these rules, 
alled exa
t asso
iationrules, is of major importan
e in pra
tise, and 
learly there are a great numberof them.Work by Guigues and Duquenne (20) and by Ganter (17) show that the setof su
h rules 
an be represented by a basis of rules, from whi
h all other rules
an be easily inferred, a pro
ess whi
h 
an drasti
ally redu
e the number ofrules whi
h need to be 
omputed and memorized. Computing this basis isequivalent to 
omputing the 
anoni
al 
over of fun
tional dependen
ies in arelational database (25).In relation to the work in this paper, existing rule generation algorithms inFormal Con
ept Analysis are based on the de�nition of two 
losure systems,
orresponding to pseudo-
losed sets and quasi-
losed sets asso
iated with theinitial 
losure system 
orresponding to 
on
epts.In this se
tion, we will apply our results to these two other 
losure systems,and in parti
ular we will a

ordingly transpose Theorem 5.9.6.1 Dependen
y relations and basisAny 
losure system is asso
iated with a dependen
y relation 
orresponding tothe set of asso
iation rules (28). Generators and basis 
an thus be used in the
ontext of 
losure systems.De�nition 6.1 A binary relation D on 2U is said to be a dependen
y relationif the following properties hold for all Y1; Y2; Y3�U :D1) D is transitive,D2) if Y2 � Y1 then (Y1; Y2) 2 D,D3) if (Y1; Y2) 2 D then (Y1 [ Y3; Y2 [ Y3) 2 D.Note that 
onditions D1) and D3) imply that if (Y1; Y2) 2 D and (Y3; Y4) 2 D,then (Y1 [ Y3; Y2 [ Y4) 2 D. Consequently, the binary relation �D de�ned on2U by (X; Y ) 2 �D i� (X; Y ) 2 D and (Y;X) 2 D is a 
ongruen
e on thesemi-latti
e (2U ;[). The stru
ture (U;�D) is 
alled a dependen
e spa
e in(28).De�nition 6.2 If R is a relation on 2U , we will denote by R+ the minimal22



relation on 2U in
luding R whi
h is a dependen
y relation.Let D be a dependen
y relation on 2U . A subrelation R �D is said to be agenerator of D i� R+ = D.If there is some proper subrelation S of R su
h that S+ = D, then R is saidto be redundant.De�nition 6.3 Let ' be a 
losure operator U . We de�ne a binary relation!' on (2U)2 by the following equivalent 
onditions for X; Y �U :X!' Y () (8Z�U) (X�'(Z)) Y �'(Z))()'(Y )�'(X)()Y �'(X)where (X; Y ) 2!' is denoted by the in�x notation X!' Y .A pair of subsets X; Y su
h that X !' Y is 
alled an exa
t asso
iationrule in Data Mining or a (fun
tional) dependen
y in the theory of relationaldatabases.From (28) hold the following results.Property 6.4 An operator ' on U is a 
losure i�!' is a dependen
y relationon 2U .From a formal point of view, X!' Y denotes a pair of sets, while X! Ydenotes a set of propositional 
lauses. However, we will see that one holds ifand only if the other holds.We 
an now de�ne generators and basis for an asso
iation relation:De�nition 6.5 Let ' be a 
losure operator on U , let X � 2U be a family ofnon-
losed sets. We will denote by R'(X ) the relation f(X;'(X)) : X 2 Xg�(2U)2.We will say that X is a generator of !' if R'(X )+ =!'. If in additionR'(X ) is minimal, then X is 
alled a basis of!'.As it has been pointed out in (20), J' is a generator of!'.De�nition 6.6 Let ' be a 
losure operator on U . Then a subset X 2 2U�F'is said to be quasi-
losed i� for any Y 2 F', X \ Y 2 F' [ fXg. We willdenote by Q' the family of quasi-
losed sets.Be
ause of De�nition 4.5, for any quasi-
losed set X, F' [ fXg is a 
losuresystem. This leads to the following theorem, proved in (20; 10).Theorem 6.7 Let ' be a 
losure operator on U , then:23



(1) Q' is a generator of !'.(2) F' [Q' is a 
losure system.(20) showed that all the basis of !' have the same 
ardinality, and theyde�ne a unique (
anoni
al) basis by using the 
losure system whi
h we willnow des
ribe.De�nition 6.8 Let ' be a 
losure operator on U . The family B' of pseudo-
losed sets of ' is de�ned by:B 2 B' i� '(B) 6= B and (8A 2 B') A � B ) '(A)�BTheorem 6.9 (20) Let ' be a 
losure operator on a �nite set U , then:(1) B' is a basis of!'.(2) B'�Q'.(3) F' [ B' is a 
losure system.We refer the reader to the original paper (20) or to (11) for the proof ofTheorems 6.7 and 6.9.Example 6.10 Figure 10 gives the latti
e of F'[B' 
orresponding to Exam-ple 5.7.
cdbdbcad

bcd

a b

ab ac de

T

T

bcde

c d

eFig. 10. Latti
e of 
on
epts and pseudo-
losed sets of the relation from Example5.7.In the rest of this work, we will 
all family B' the 
anoni
al basis of!';we will denote by �' the 
losure operator asso
iated with the 
losure systemF' [Q', and by �' the 
losure operator asso
iated with F' [ B'.As we have generalized domination to any 
losure system, there will be adomination for 
losure system F�' = B' [ F' and a domination for 
losure24



system F�' = Q'[F'. Chara
terization 4.16 
an thus be applied to generatingthe 
losed sets of �' and �'.6.2 Canoni
al basis and minimal support Horn representationWe will now give a logi
al representation of the 
anoni
al basis, and 
orre-spondingly express the domination relations asso
iated with F�' and F�'.This logi
al representation is based on the following theorem well-known inRelational Databases (14, Ch.11, x2.2). We restate it here using the notationsintrodu
ed in the previous subse
tion.Theorem 6.11 Let R be a binary relation on 2U , X a subset of U and x anelement of U . Then, (X; fxg) 2 R+ i� we have:^fV !W : (V;W ) 2 Rg ^ :(X! x)= 0From this theorem, the two following 
orollaries follows dire
tly. The �rst onetranslates in terms of Horn fun
tions the notion of generator of a dependen
yrelation, the se
ond one translates the notion of non redundan
y of a set offun
tional dependen
ies.Corollary 6.12 Let ' be a 
losure operator; X is a generator of!' i� H'(X )is equivalent to H'(2U).PROOF. X is a generator of!' i�R'(X )+ =!'. FromTheorem 6.11 followsthat, for any A�U and a 2 U � A,(A; fag) 2 R'(X )+()^H'(X ) ^ :(A! a) = 0Consequently, R'(X )+ =!' i� VH'(2U) and VH'(X ) have the same impli-
ates i� H'(X ) is equivalent to H'.This 
orollary shows the well-known 
onne
tion between the 
losure of a setof fun
tional dependen
ies using rules D1), D2) and D3) and the forward
haining 
losure de�ned by a set of 
lauses. However, there is a slight di�eren
ebetween the notion of a non-redundant set of fun
tional dependen
ies and anon redundant set of 
lauses. The following de�nition and 
orollary give theexa
t 
onne
tions between these 
on
epts, as it is done in (9).25



De�nition 6.13 Given a set H = fAp! ap : p 2 Pg [ fBn!: n 2 Ng ofHorn Clauses, we denote by Su(H) the set of its supports: fAp : p 2 Pg[fBn :n 2 Ng.We shall say that H is support -non-redundant if fBn : n 2 Ng is irredundantand for any p 2 P ,^(H� fAi! ai : Ai = Ap; i 2 Pg) 6=^HOtherwise H is said to be support-redundant.Finally, H is said to be a minimal-support Horn representation of a fun
tionf if H is a Horn representation of f su
h that the number jSu(H)j of supportsin H is minimal.Corollary 6.14 Let ' be a 
losure operator on U , and X �J', then:(1) R'(X ) is non-redundant i� H'(X ) is support-non-redundant.(2) X is the 
anoni
al basis of ' i� H'(X ) is a minimal-support Horn rep-resentation of f' with supports of maximal 
ardinality.PROOF. We �rst prove Item 1. Let us suppose that there exists J 2 J'su
h that R'(X � fJg)+ =!'. By Corollary 6.12, H'(X � fJg) is equiva-lent to H'(2U). Sin
e J is a generator, the set XJ of 
lauses in H'(X ) su
hthat Su(XJ) = fJg is non-empty. Consequently, H'(X ) � XJ � H'(X ) andV(H'(X )�XJ) = VH'(X ). The 
onverse 
an be proved in a similar fashion.Item 1 together with Corollary 6.12 imply that X is a basis if and only ifH(X )is a minimal support Horn representation of f'. Given su
h a representation,it follows from Theorem 6.9 that VH(X ) = VH(B') and jSu(H(X ))j =jB'j = jSu(H(B'))j. Moreover, the 
losure operator �' maps ea
h supportS 2 Su(H(X )) into the smallest B 2 B' su
h that S � B. This de�nes aone-to-one 
orresponden
e that maps any element of jSu(H(X ))j into a largerelement in Su(H(B')).The following 
orollary derives (25), where algorithms to 
ompute 
anoni
al
overs of fun
tional dependen
ies in a relational database are presented. A
omplete and dire
t proof 
an now be found in (9).Corollary 6.15 Let ' be a 
losure operator on a �nite set U . Given thegenerator J', the problem of �nding a basis of ' is polynomially solvable.We will now translate dominations for 
losure �' into logi
al form, as we didin Theorem 5.9 for 
losure '. 26



Let ' be a 
losure operator on U , A a 
losed set, (x; y) 2 (U�A)2 and [B'℄A;xthe following subset of B':[B'℄A;x= fX 2 B' : jXj < j�'(A [ fxg)jgBy De�nition 6.8 and by Theorem 6.11,(x; y) 2 dom�'(A)() K'([B'℄A;x ; A; x; y)is unsatis�able.6.3 Horn representations of domination and quasi-
losed setsAnother approa
h to �nding the 
anoni
al basis is to generate the quasi-
losedsets by the method presented in (20). In the 
ontext of propositional Horn
lauses, the relationship between the representation of f' based on quasi-
losedsets and the one based on pseudo-
losed sets is quite simple sin
e H'(B') =H'(Q').Domination for �' 
an be 
omputed for any A 2 F' using any generatorG � J' of!', as we will see in Theorem 6.20. To state this theorem weneed to 
onsider �nite ideals of 
losure systems and pure 
omponents of Hornrepresentations.De�nition 6.16 For any 
losed set A, we will denote by 'jA the 
losurede�ned on A by ('jA)(X) = '(X) for any X �A. Let H be a prime repre-sentation of f', we will denote by HjA the set of 
lauses:HjA = fg 2 H : Sufgg�Ag [ fA!gwhere Sufgg is the support of g.Property 6.17 Let ' be a 
losure operator and H a prime representation off', then for every 
losed set A, HjA is a Horn representation of f'jA.PROOF. Clearly, VHjA = f' ^ Vfx!: x 62 Ag ^ A!= f'jAGiven a set of 
lauses H, we denote by HP the subset of pure Horn 
lauses.We shall 
all this subset the pure 
omponent of H. The following property hasbeen shown in (21). 27



Property 6.18 The pure 
omponents of prime Horn representations of agiven Boolean fun
tion are equivalent.We 
an now state the Horn representation of domination for quasi-
losed setsbased on the following lemma from (20).Lemma 6.19 ((20)) X 2 Q' i� for any Y � X, '(Y ) 6= '(X) ) '(Y ) �X.Theorem 6.20 Let ' be a 
losure operator on U , A a 
losed set, (x; y) 2(U � A)2, H a prime representation of f' and P a prime representation ofV(Hj'(A [ fxg)) = f'j'(A[fxg).Then (x; y) 2 dom�'(A) i� K' �PP ; A; x; y� is unsatis�able.PROOF. Let X be a subset of U and J'(A; x) = fJ 2 J' : '(J) � '(A [fxg)g). From Lemma 6.19 and Theorem 6.11, for any subset Z � U , thesmallest quasi-
losed set Q'(Z) 
ontaining Z is the smallest solution of theequation:^H'(J'(A; x)) ^^f! z : z 2 Zg=1However, H(J'(A; x)) is a prime Horn representation of the pure 
omponentof f'j'(A[fxg). By Property 6.18 we have:^H'(J'(A; x))=^PPConsequently, y 2 �'(A [ fxg) i� Vf! z : z 2 A [ fxgg ^ y!= 0, whi
hproves the theorem.As re
alled in Se
tion 5.3, a prime 
over of H 
an be 
omputed in O(jHj2), sodom�'(A) 
an be 
omputed in O(jHj2:jU � Aj) if jU � Aj � jHj.However, using the fa
t that, given a 
losure operator ', any generator G�J'of!' indu
es a prime representation of f', it is also possible to 
omputedom�'(A) in O(jGj:jU�Aj2) time if the relation R'(G) is known. We illustratethis in the following example.Example 6.21 Consider again the 
losure system de�ned in Example 5.7.J'(fd; eg; a)= ffeg; fb; 
g; fb; dg; f
; dgg=J'(fd; eg; b) = J'(fd; eg; 
)28



where J'(A; a) has been de�ned for any 
losed set and any a 2 U in the proofof Theorem 6.20. For x 2 fa; b; 
g:H'(J'(fd; eg; x) [ f! d;! eg) = fbd! 
; 
d! b;! d;! eg)and dom�'(fd; eg) = f(b; 
); (
; b)g. Therefore, the elements of Q' that 
overfd; eg are fa; d; eg and fb; 
; d; eg. Among them, only the last one is in B'.7 Con
lusion and open questionsIn this paper, we use the relationship between 
on
ept latti
es and dominationin graphs to extend existing graph-oriented results on 
on
ept latti
es to ageneral 
losure system and to Horn 
lauses.Though there obviously remains mu
h work to be done in this dire
tion, ourresults are interesting not only from a possible algorithmi
 point of view, butalso be
ause they 
an lead to a better understanding of the 
anoni
al basis ofrules; moreover, it is important to �nd new ways of modeling these results sothat a variety of non-spe
ialists 
an a
hieve a better grasp on these problems.Our results are algorithmi
ally promising be
ause the notion of domination al-lows a lo
al approa
h to generating 
losed sets: �rst, one 
an easily examine asubproblem related to a parti
ular area of the underlying latti
e, without gen-erating the entire latti
e stru
ture starting from the bottom element. Se
ond,this 
an allow a very eÆ
ient re
ursive generation te
hnique of the latti
e, aswe have shown is the 
ase for 
on
ept latti
es (5). The same te
hnique appliesto generating other latti
es of 
losed sets; rule generation for example shouldbe an interesting appli
ation of this.Another question of great 
urrent interest is that of generating approximate as-so
iation rules. As an example, an interesting re
ent approa
h by J-M. Bernardand S. Poitrenaud (2) works by �rst approximating the binary relation a

ord-ing to 
oherent probabilisti
 models whi
h must be 
ompatible with logi
alrules; the logi
al interpretation we introdu
e in this paper 
ould be 
ombinedwith this approa
h in future work.Referen
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