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Abstract. We propose a graph-based decomposition methodology of
a network of document features represented by a terminology graph.
The graph is automatically extracted from raw data based on Natural
Language Processing techniques implemented in the TermWatch system.
These graphs are Small Worlds. Based on clique minimal separators and
the associated graph of atoms: a subgraph without clique separator, we
show that the terminology graph can be divided into a central kernel
which is a single atom and a periphery made of small atoms. Moreover,
the central kernel can be separated based on small optimal minimal sep-
arators.

Key words: graph algorithms, graph decomposition, polyhedral approach, text
mining, topic vizualisation

1 Introduction

Terminology graphs that include explicitly defined properties and relationships
developed for human-curated semantic networks, such as controlled ontologies,
are used for organizing and communicating information. At the core of these ter-
minologies are discrete elements of knowledge, or entities, which carry meaning.
The way in which these entities are arranged and encoded in electronic format
is a key concern in informatics [1].

The TermWatch system [2] aims to automatically extract a terminology graph
from texts based on Natural Language Processing (NLP) approaches originally
introduced in [3].

In this paper we show how these graphs can be structured in coherent sub-
networks in order to allow its visualisation and to approximate a real concept
network. For that we use two recent graph decomposition approaches. The first
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one is based on the concept of graph of atoms (an atom is a subgraph with-
out clique separator). The important point is that this decomposition is unique.
However, there is no upper limit to atom size and we have observed that termi-
nology graphs are made of small atoms gravitating at the peripheral of a huge
central one. It is necessary to break this central atom into equal parts without
loosing its internal structure. We show that this can be efficiently accomplish
using optimal separators.

The rest of the paper is organised as follows. In section 2 we recall the fea-
tures of terminology graphs extracted using TermWatch system. In section 3, we
formally define the process of graph decomposition into atoms. In section 4 we
show how optimal separators can be found. In section 5 we experiment the whole
process on a real corpus. Finally, we conclude on related work and perspectives.

2 TermWatch system

This system comprises three modules: a term extractor, a relation identifier
which yields the terminological network and a visualisation module.

2.1 Term extraction

This module performs term extraction based on shallow NLP, using the LTPOS
tagger and LTChunker?. LTChunker identifies simplex noun phrases (NPs), i.e.,
NPs without prepositional attachments. In order to extract more complex terms,
we wrote contextual rules to identify complex terminological NPs, i.e. those with
a prepositional attachment. The number of words in a term is not limited. This
choice is based on the observation that most concepts in the technical domain
are long multi-word terms.

2.2 Identifying semantic nearest neighbours (S-NN) of terms

This module identifies the different semantic variants of the same term based
on surface and internal linguistic operations between MWTs and the use of an
external resource, here WordNet.

Morphological variants are identified using the LTPOS tagger. Lexical vari-
ants are identified based on word changes in terms. However, the definition of
lexical variants is restricted in order to allow the change of only one word in the
same position so as to avoid generating spurious relations. The change can take
place either in a modifier position (T-cell line / fibroplast line) or in the head
position (T-cell line / T-cell lymphoma). The head in a noun phrase is the term
focus (subject) while the modifier plays the role of a qualifier. Syntactic vari-
ants involve structural changes in terms, for instance a permutation: “retrieval
of information” and “information retrieval”. Other syntactic operations called
expansions, involve the addition of modifier or head words in a term. Modifier

* (C) Andrei Mikheev 1996 2000 (C) LTG, University of Edinburgh 1996 2000.
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expansions are subdivided into “Insertions” and “Left-expansions”. Head expan-
sions are either expansions solely on the head position of a term or double ex-
pansions (both in the modifier and head position). Semantic variants are used
to identify more semantically bound terms amongst lexical substitutions as the
latter can be noisy, especially on binary terms. For instance, a chain of lexical
head substitutions can link all of these terms: T-cell line, T-cell lineage, T-cell
lymphoma, T-cell lysate, T-cell malignancy, T-cell maturation, T-cell mitogen,
T-cell mitogenesis. This can capture semantically close terms like “T cell line”
and “T cell lineage” but this would be purely accidental. To identify semantic
substitutions amongst the lexical ones, WordNet is used to filter those variants
where the substituted words are in a WordNet relation.” We distinguish Word-
Net substitutions according to the two grammatical functions of the substituted
word: head or modifier.

The variations described above can be further refined according to the num-
ber and position of inserted words for expansion variants. Thus we distinguish
further between strong and weak expansions. Strong expansions are those vari-
ants where only one word is added (B cell lymphoma line / human B cell lym-
phoma line) while those involving the addition of more than one word are consid-
ered as weak expansion variants (TSH receptor / TSH receptor (TSHR)-specific
T cell line).

2.3 Graph visualisation module

For visualization purposes, graphs are clustered. For this task, we use a variant
of the single link clustering (SLC), called CPCL (Classification by Preferential
Clustered Link) originally introduced in [3] to form clusters of keywords related
by geodesic paths made of strongth associations. The advantages of SLC clus-
tering are that it produces a unique output and that it runs in linear time on
the number of edges. The CPCL variant also has these properties. It merges it-
eratively clusters of keywords related by an association strongest than any other
in the external neighborhood. In other words, CPCL works on local maximal
edges instead of absolute maximal values like in standard SLC. CPCL output
is unique such as in SLC while reducing the chain effect. We refer the reader to
[4] for a detailed description in the graph formalism. The CPCL algorithm has
been optimised to run in O(|E|) time, where |E| is the number of edges of the
graph.

Finally, using the interactive interface AiSee (http://www.aisee.com) and its
optimized bi-scale force directed layout, we obtain a two level access to the
network of terms and clusters.

AiSee needs as input a file in Graph Description Language (GDL). Our GDL
generator uses edge width to visualize the strength of the link. Clusters are then

5 Despite the fact that general resources cannot capture the explicit conceptual re-
lation between specialized domain terms, we still highly improved the precision of
the substitutions variants using WordNet, in the sense that 97% of the WordNet
substitutions linked semantically related terms.
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represented by ovals whose size depends on the number of clustered vertices. Fi-
nally, special clusters can be unfolded in a wrapped form that allows to visualize
the transitions to other clusters.

3 Atom Graph decomposition

3.1 Introduction to graph decomposition

We will recall some preliminary graph notions which will be helpful to follow our
approach.

A graph is denoted G = (V, E) where V is a finite set of vertices and E is
a finite set of edges. The graphs on which we work are undirected. G(A) is the
subgraph induced by a vertex set A(included in V). A clique in a graph is a
set of pairwise adjacent vertices. A connected component graph is a maximal
vertex set wich induces a maximal connected subgraph. A tree is a connected
graph without cycle. A graph is said to be chordal graph iff there is no chord-
less cycle of length more than 3. In the simple graphs that are the trees, the
articulations are the vertices which are not leaves (vertices which have at max-
imum one incident edge). The removal of an articulation vertex defines several
subgraphs. To decompose a tree, we copy an articulation in each subgraph its
removal defines. Graphs subjacent to corpus are not trees. To decompose them,
we use instead of articulation vertex in the case of tree, the groups of vertices
called ‘minimal separators’. A subset S of vertices is a minimal separator of a
connected graph G = (V, E) if G(V —S) has at least two connected components.
In general, a graph has an exponential number of minimal separators. However,
it has been proved that the number of clique minimal separators (separators
that are completely connected) is weak and less than the number of vertices. In
fact the decomposition of the graph and the enumeration of all clique minimal
separators can be done in linear time O(|V'||E]). This has been dealt by Tarjan
in [?]. This process is based on minimal triangulation algorithms that embed a
graph into a chordal graph by the addition of an inclusion-minimal set of edges.

Thus we propose an algorithmic process which decomposes a graph of terms
subjacent to a given corpus of textual data into connected groups of terms which
are called ‘atoms’ and that do not have clique separators. One of the interesting
advantages of this decomposition is that atoms we define are not disjoint, but
can have an overlap. The process of decomposition consists in copying a ‘clique
minimal separator’ into different parts of the graph, so that each overlap between
two ‘atoms’ is a ‘clique minimal separator’. Previous works have proved that
the intersection graphs of subtrees in trees are exactly the chordal graphs [?].
In our application, we have found that our graphs of atoms are chordal. To
keep the structure of the graph, they have to be copied in each different part
defined by their removal. One of the important features of this method is that
the decomposition is unique.
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3.2 Algorithmic decomposition

We have introduced our method in [4]. To implement our program, first we
computed a minimal triangulation in linear time O(n.m) followed by the process
of graph decomposition dealt by Tarjan. Thus, we produced all clique minimal
separators of the graph. Then we decompose the graph in a set of atoms. If there
are cycles with more than three vertices in the graph, they will be retrieved into
atoms. The algoritm decomposition is described as below:

Decomposition algorithm
Input : A graph G = (V, E) and moplex ordering .
Output : Set of graph components

Initialization: i——1,j«—1.
begin
For i=1 to |k|-1 do ;
Si < Ng(k(7)); Na(k(2)) is the neighborhood of i
if S; is a clique then
C'«— 1 and its neighborhood;
C— G-C;
Comp(j)— C US:;
J=i+ 1

Comp(j)«— G (Last component);

end

3.3 Atom decomposition of Small World Graphs

A graph is said to be SWG when it simultaneously shows both low diameter
and high clustering measure, (i.e., high density of edges in the neighborhood of
each vertex). According to [5], the path length L(p) and the clustering coefficient
C(p) are the two structural measurements that characterize the SWGs.

The usual approach to visualize a SWG consists in computing a decomposi-
tion into highly connected components and to offer to the user an abstract view
of the network to start with [6].

We adopt a similar approach except that we compute overlapping atoms [4]
instead of disjoint connected components. The atoms of a graph can be defined
based on the concept of (a,b)-clique separators.

By definition an atom A of a graph G contains at least one complete separator
S of G, however S is not a separator of A. Atoms overlap if they contain the
same separator of G.

In our experiments, we have observed that graphs have a central atom with
long cycles that involves almost 50% of the vertices and numerous peripheral
atoms of small size that are almost chordal (cycles have less than three elements).

To visualize small atoms and their interactions on a map, we shall define a
valued graph exclusively based on the structure of G = (V, E). Each atom A
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is labeled by the vertex w; having the highest degree defined as the number of
edges linking w; to another vertex wo in A. Atoms having the same label are
merged together. The valued graph of atoms that we shall denote by G(At) =
(Vat, Eat,aat) is defined as follows.

The vertex of G(At) are pairs of the form (k, 1) where k is a vertex of G, and
1 is the label of an atom containing k. An edge e = (wy,ws) is defined between
two vertices w1 = (k1,11) and wy = (ka, l2) if one of the following happens:

1. 13 = ly and (k1,k2) is an edge of G. In this case the value s4; of the edge e
is set to 1.

2. k1 = ko and there exists a clique separator S in G that separates the atom
I from the atom 5. In this case a4 (wl, w2) is set to the ratio between the
number of elements in S and the total number of elements in atoms [; and

la.

The first case corresponds to edges in atoms. To ensure that the related
vertices will not be separated by any clustering procedure, we set the value of
such edges to 1, the maximum. The second case deals with edges relating copies
of G vertices in different atoms. This valued graph can be displayed as described
here below.

Now to vizualize the central atom we shall look for optimal minimal separa-
tors that allow to split the atom into parts of equal size.

4 Graph decomposition by optimal separators

Combinatorial optimization is a lively field of applied mathematics, combin-
ing techniques from combinatorics, linear programming, and the theory of al-
gorithms, to solve optimization problems over discrete structure. Combinatorial
optimization searches for an optimum object in a finite collection of objects.
Typically, the collection has a concise representation, like a graph, while the
number of objects is huge. Combinatorial optimization problems are usually rel-
atively easy to formulate mathematically, but most of them are computationally
hard. The basic idea behind polyhedral techniques is to derive a good linear
formulation of the set solutions by identifing linear inequalities that can proved
to be necessary in the description of the convex hull of feasible solutions.

4.1 Polyhedral approach for ab-separator problem

Finding a balanced minimum-weight separator in a n-vertex graph that par-
titions the graph into two components of similar sizes, smaller than 2n/3, is
relevant in many problems. Formally, the vertex separator problem (VSP) can
be stated as follows. The instance consists of a connected undirected graph
G = (V,E), with |[V| = n, an integer 3(n) such that 1 < (n) < n and a

cost ¢; associated with each vertex ¢ € V. The problem is to find a partition
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{A,B,C} of V such that :

E contains no edge (4,j) withi € A ,j € B, (1)
max{|AL,[B} < B(n) 2)
Z ¢; is minimized (3)
jeC

The vertex separator problem (VSP) is NP-hard [7]. In 2005, Egon Balas and
Cid De Souza provide the first polyhedral study of the vertex separator problem
(VSP) [8]. Recently, Didi Biha and Meurs [in preparation], starting from the
Balas and De Souza’'work, studied the vertex separator polyhedron and gived
several new valid inequalities for this polyehdron.

4.2 The polyhedron of separators

For a given graph G = (V, E), we consider the particular case of (VSP) in which
two non-adjacent vertices a and b are given and we look for a partition {A, B, C'}
which satisfies (1) and (2) with a € A, b € B and |C| is minimum. This particular
case is called ab-separator problem in this paper.We can solve (VSP) by solving

@ ab-separator problems.

at most

Given the non-adjacent vertices a and b, the incidence vector of a partition

{4, B,C} of V which satisfies (1) and (2) with a € A and b € B is

X = (Z1a) 0 T(n—2)a> T1bs s T(n—2)p) € {0,1}2("=2) with 25, = 1 & i € A,

zip=1<i€e B, VieV\{a,b}

Let P,; be the polyhedron associated to the ab-separator,

i.e. Py = Conv {X € RQ("_Q)} : X is an incidence vector for some ab-separator

partition {4, B, C}.

Let I, be a simple chain between a and b. Let I(I,;) be the set of intern vertices

of I'yy. The inequality Z (ia + i) < [I(Tup)] — 1 is valid for Py (4.2).
i€1(Lap)

In fact, if {4, B,C} is an ab-separator partition, then every chain from a to b

contains at least one vertex of C. For all couple of non-adjacent vertices (i, j) €

V, let ay; be the maximum number of disjoint chains between ¢ and j.

4.3 Model

Our model is formally described as follows:
Data :

— A connected undirected graph G = (V, E), with |V| = n,
— An integer G(n)

a € A, b € B virtual vertices,

— Qpin = Min{ai;, i€V, jEV, (i,5) ¢ E}
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The (VSP) can be formulated as the following mixed integer programming :

Maximize Z(xm + i)

i=1
s.c.:
Ziq € {0,1}, VieV (4)
Tia + X < 1, VieV (5)
Tiq + Tjb < 17 V(Zu]) Sy (6)
Tja + T S 17 V(Zu]) Sy (7)
Z(mm +Zip) <N — Wmin (8)
i=1
- n — Qmin
1< B 9
< Pora < g Q
1<) g <Bn), 1<) @i < B(n), (10)
i=1 i=1

The constraint (5) is valid since A and B are disjoint sets. The constraints
(6) and (7) are valid since there is no edge between the two sets A et B. The
constraint (8) comes from (4.2). Without loss of generality, we may assume that
|A| < |B|. Furthermore, |A| + |B| < n — Qmin, thus [A] < |2=5min || that is
corresponding to the constraint (9) in our model. The constraints (10) are valid
since the ab-separators satisfy (2).

5 Application

Based on graph decomposition technique into atoms described here above, the
methodology used here for viewing results merges two graphs into the same
visual output: the graph of term-term associations and of variation links and,
a second graph of author-term association (ATCA here below), enabling us to

link authors to the clusters of terms used (research topics) in their publications.

5.1 Methodology summary

The method works in seven phases described hereafter:

1. Term extraction and selection: noun phrases (NPs) are extracted from
ISI abstracts. NPs are merged together based on COMP relations described
in section 2: spelling variants, left expansions, insertions, modifier substi-
tution and WordNet synonyms. The resulting clusters are the connected
components of the graph where vertices are terms and there is one edge be-
tween each term and its variants. We shall refer to these clusters as Term
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components. Only Term components with at least two vertices are consid-
ered. Each of these Term components are labelled by the NP having the most
number of variants. Supplementary NPs are considered based on CLASS re-
lations. These relations are: left expansions and head substitutions on NPs
with at least three words. NPs involved in such variations are added as sup-
plementary Term components but not clustered. Each of them is isolated in
a separated component. This a way to select NPs based on surface linguistic
variation.

. Terminology graph extraction: associations are computed between Term
components or authors, this results in the extraction of a new graph where
vertices can be both previous term components or authors. An edge is drawn
between two of these vertices whenever a valid association is found. Associ-
ations are computed in the following way. For each component or author z,
we denote by D(x) the set of documents where abstracts have at least one
NP in z if x is a component or where z is one of the authors otherwise. Then
two vertices ¢; and ¢y are associated if there are at least two documents in
D(c1).D(c2). In this case, an equivalence E(cq,ca) coefficient is computed
between ¢; and ¢o in the following way:

|D(c1).D(c2)[?

EBlel,e2) = 5 D]

Only associations for which E(c1,c2) > 0.05 are considered. Let us call this
graph ATCA (Associations between Term Components and Authors).

. Graph components: connected components of ATCA are computed. It is
usual that in this kind of graph, there are lots of small components and only
one really big component that contains more than two thirds of the vertices.
We shall refer to it as the main ATCA component.

. Atom decomposition: the main ATCA component is decomposed into
atoms. An atom is a sub-graph where there is no clique separator. Again
in this kind of graph, it often occurs that there is a central huge atom and
several small ones. We shall refer to the biggest atom as the central ATCA
atom.

. peripheral atom layout: peripheral atoms and their interactions are visu-
alized by generating the atom graph as described in section 3.3. Since atoms
overlap, each atom is labelled by its central vertex (the vertex with the high-
est degree). A vertex in several atoms is duplicated. Each copy is labelled by
the vertex label and the atom label. An edge is drawn between two copies
of ATCA vertices if they share the same atom label or if they are copies in
separated atoms that involve a common ATCA separator.

. central atom separation: we also implemented the splitting of the central
atom based on optimal separators as described in §4.

. Central atom visualisation: the central atom componenrts are visualized
based on Single Link Clustering that groups together vertices whose asso-
ciation equivalence coefficient between is higher than any other one in the
neighbourhood (local maximums). This allows us to reduce the size while
preserving the graph structure.
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5.2 Results

We experimented this method on the same corpus as [9] on terrorism extracted
from IST bibliographic database. In this corpus, 57,855 NPs were extracted from
3,366 IST abstracts. These NPs were clustered into 3,293 Term components with
at least two NPs. The maximal size of Term components is 30. 8,357 supple-
mentary terms having at least one CLASS variant are added to the set of Term
components. The ATCA graph has 16, 258 edges. Its main component has 9, 324
edges over 1,070 vertices. This component involve 489 atoms. The central atom
has 2,070 edges over 307 vertices and can be splitted in three parts using two
separators of four vertices each. All the other atoms have less than 29 vertices.

Upon closer inspection, these three sub-networks corroborate the findings in
Chen'’s study (2006) on the same corpus but on a shorter period (1990-2003). In
[9], three major groups of clusters were identified by author co-citation and term
networks using CiteSpace II: a cluster on ‘body injuries in terrorist bombing’,
a second bigger cluster on ‘health care response to the threat of biological and
chemical weapons’, a third biggest and more recent cluster on pyschological and
pyschiatric impacts of the september 11, 2001 terrorist attack with terms like
‘United States’ and ‘posttraumatic stress disorder’ (PTSD) being very promi-
nent. We found a similar demarcation in the internal structure of the central
atom that has the following separators:

1. ‘health care provider’, ‘specific clinical’, ‘AU: Tonat K’ and ‘physical injury’.
2. ‘public health’, ‘AU: Tracy M’ ‘“terrorist attack victim’ and ‘AU: Pfeffer-
baum B’

Figure 1 shows the atom graph of the terminology graph computed on this
corpus and its central atom before applying the decomposition based on optimal
minimal separators.

6 Conclusion

To the best of our knowledge, this paper is the first attempt to apply graph atom
decomposition to knowledge domain mapping [11, ?,12]. The advantage of atom
graph decomposition is that it is unique since it is based on the intrinsic structure
of the graph. Its main drawback is that small atoms do not always exists in a
graph. The results obtained on the corpus used in this experiment tend to show
that: atom decomposition is tractable on a large corpus of documents and that
central atoms can be separated using optimal separators.

Previous experimentations on other bibliographic corpura dealing with Infor-
mation Retrieval, genomics or Organic Chemistry have confirmed these results.
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