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3 LIA, Université d'Avignon, BP 1228 84911 Avignon, Cedex 9, Frane{marie-jean.meurs,eri.sanjuan}�univ-avignon.frAbstrat. We propose a graph-based deomposition methodology ofa network of doument features represented by a terminology graph.The graph is automatially extrated from raw data based on NaturalLanguage Proessing tehniques implemented in the TermWath system.These graphs are Small Worlds. Based on lique minimal separators andthe assoiated graph of atoms: a subgraph without lique separator, weshow that the terminology graph an be divided into a entral kernelwhih is a single atom and a periphery made of small atoms. Moreover,the entral kernel an be separated based on small optimal minimal sep-arators.Key words: graph algorithms, graph deomposition, polyhedral approah, textmining, topi vizualisation1 IntrodutionTerminology graphs that inlude expliitly de�ned properties and relationshipsdeveloped for human-urated semanti networks, suh as ontrolled ontologies,are used for organizing and ommuniating information. At the ore of these ter-minologies are disrete elements of knowledge, or entities, whih arry meaning.The way in whih these entities are arranged and enoded in eletroni formatis a key onern in informatis [1℄.The TermWath system [2℄ aims to automatially extrat a terminology graphfrom texts based on Natural Language Proessing (NLP) approahes originallyintrodued in [3℄.In this paper we show how these graphs an be strutured in oherent sub-networks in order to allow its visualisation and to approximate a real oneptnetwork. For that we use two reent graph deomposition approahes. The �rst
⋆⋆ Corresponding author.



2 Biha,Kaba,Meurs,SanJuanone is based on the onept of graph of atoms (an atom is a subgraph with-out lique separator). The important point is that this deomposition is unique.However, there is no upper limit to atom size and we have observed that termi-nology graphs are made of small atoms gravitating at the peripheral of a hugeentral one. It is neessary to break this entral atom into equal parts withoutloosing its internal struture. We show that this an be e�iently aomplishusing optimal separators.The rest of the paper is organised as follows. In setion 2 we reall the fea-tures of terminology graphs extrated using TermWath system. In setion 3, weformally de�ne the proess of graph deomposition into atoms. In setion 4 weshow how optimal separators an be found. In setion 5 we experiment the wholeproess on a real orpus. Finally, we onlude on related work and perspetives.2 TermWath systemThis system omprises three modules: a term extrator, a relation identi�erwhih yields the terminologial network and a visualisation module.2.1 Term extrationThis module performs term extration based on shallow NLP, using the LTPOStagger and LTChunker4. LTChunker identi�es simplex noun phrases (NPs), i.e.,NPs without prepositional attahments. In order to extrat more omplex terms,we wrote ontextual rules to identify omplex terminologial NPs, i.e. those witha prepositional attahment. The number of words in a term is not limited. Thishoie is based on the observation that most onepts in the tehnial domainare long multi-word terms.2.2 Identifying semanti nearest neighbours (S-NN) of termsThis module identi�es the di�erent semanti variants of the same term basedon surfae and internal linguisti operations between MWTs and the use of anexternal resoure, here WordNet.Morphologial variants are identi�ed using the LTPOS tagger. Lexial vari-ants are identi�ed based on word hanges in terms. However, the de�nition oflexial variants is restrited in order to allow the hange of only one word in thesame position so as to avoid generating spurious relations. The hange an takeplae either in a modi�er position (T-ell line / �broplast line) or in the headposition (T-ell line / T-ell lymphoma). The head in a noun phrase is the termfous (subjet) while the modi�er plays the role of a quali�er. Syntati vari-ants involve strutural hanges in terms, for instane a permutation: �retrievalof information� and �information retrieval �. Other syntati operations alledexpansions, involve the addition of modi�er or head words in a term. Modi�er4 (C) Andrei Mikheev 1996�2000 (C) LTG, University of Edinburgh 1996�2000.



Graph deomposition approahes ... 3expansions are subdivided into �Insertions� and �Left-expansions�. Head expan-sions are either expansions solely on the head position of a term or double ex-pansions (both in the modi�er and head position). Semanti variants are usedto identify more semantially bound terms amongst lexial substitutions as thelatter an be noisy, espeially on binary terms. For instane, a hain of lexialhead substitutions an link all of these terms: T-ell line, T-ell lineage, T-elllymphoma, T-ell lysate, T-ell malignany, T-ell maturation, T-ell mitogen,T-ell mitogenesis. This an apture semantially lose terms like �T ell line�and �T ell lineage� but this would be purely aidental. To identify semantisubstitutions amongst the lexial ones, WordNet is used to �lter those variantswhere the substituted words are in a WordNet relation.5 We distinguish Word-Net substitutions aording to the two grammatial funtions of the substitutedword: head or modi�er.The variations desribed above an be further re�ned aording to the num-ber and position of inserted words for expansion variants. Thus we distinguishfurther between strong and weak expansions. Strong expansions are those vari-ants where only one word is added (B ell lymphoma line / human B ell lym-phoma line) while those involving the addition of more than one word are onsid-ered as weak expansion variants (TSH reeptor / TSH reeptor (TSHR)-spei�T ell line).2.3 Graph visualisation moduleFor visualization purposes, graphs are lustered. For this task, we use a variantof the single link lustering (SLC), alled CPCL (Classi�ation by PreferentialClustered Link) originally introdued in [3℄ to form lusters of keywords relatedby geodesi paths made of strongth assoiations. The advantages of SLC lus-tering are that it produes a unique output and that it runs in linear time onthe number of edges. The CPCL variant also has these properties. It merges it-eratively lusters of keywords related by an assoiation strongest than any otherin the external neighborhood. In other words, CPCL works on loal maximaledges instead of absolute maximal values like in standard SLC. CPCL outputis unique suh as in SLC while reduing the hain e�et. We refer the reader to[4℄ for a detailed desription in the graph formalism. The CPCL algorithm hasbeen optimised to run in O(|E|) time, where |E| is the number of edges of thegraph.Finally, using the interative interfae AiSee (http://www.aisee.om) and itsoptimized bi-sale fore direted layout, we obtain a two level aess to thenetwork of terms and lusters.AiSee needs as input a �le in Graph Desription Language (GDL). Our GDLgenerator uses edge width to visualize the strength of the link. Clusters are then5 Despite the fat that general resoures annot apture the expliit oneptual re-lation between speialized domain terms, we still highly improved the preision ofthe substitutions variants using WordNet, in the sense that 97% of the WordNetsubstitutions linked semantially related terms.



4 Biha,Kaba,Meurs,SanJuanrepresented by ovals whose size depends on the number of lustered verties. Fi-nally, speial lusters an be unfolded in a wrapped form that allows to visualizethe transitions to other lusters.3 Atom Graph deomposition3.1 Introdution to graph deompositionWe will reall some preliminary graph notions whih will be helpful to follow ourapproah.A graph is denoted G = (V, E) where V is a �nite set of verties and E isa �nite set of edges. The graphs on whih we work are undireted. G(A) is thesubgraph indued by a vertex set A(inluded in V ). A lique in a graph is aset of pairwise adjaent verties. A onneted omponent graph is a maximalvertex set wih indues a maximal onneted subgraph. A tree is a onnetedgraph without yle. A graph is said to be hordal graph i� there is no hord-less yle of length more than 3. In the simple graphs that are the trees, theartiulations are the verties whih are not leaves (verties whih have at max-imum one inident edge). The removal of an artiulation vertex de�nes severalsubgraphs. To deompose a tree, we opy an artiulation in eah subgraph itsremoval de�nes. Graphs subjaent to orpus are not trees. To deompose them,we use instead of artiulation vertex in the ase of tree, the groups of vertiesalled `minimal separators'. A subset S of verties is a minimal separator of aonneted graph G = (V, E) if G(V −S) has at least two onneted omponents.In general, a graph has an exponential number of minimal separators. However,it has been proved that the number of lique minimal separators (separatorsthat are ompletely onneted) is weak and less than the number of verties. Infat the deomposition of the graph and the enumeration of all lique minimalseparators an be done in linear time O(|V ||E|). This has been dealt by Tarjanin [?℄. This proess is based on minimal triangulation algorithms that embed agraph into a hordal graph by the addition of an inlusion-minimal set of edges.Thus we propose an algorithmi proess whih deomposes a graph of termssubjaent to a given orpus of textual data into onneted groups of terms whihare alled `atoms' and that do not have lique separators. One of the interestingadvantages of this deomposition is that atoms we de�ne are not disjoint, butan have an overlap. The proess of deomposition onsists in opying a `liqueminimal separator' into di�erent parts of the graph, so that eah overlap betweentwo `atoms' is a `lique minimal separator'. Previous works have proved thatthe intersetion graphs of subtrees in trees are exatly the hordal graphs [?℄.In our appliation, we have found that our graphs of atoms are hordal. Tokeep the struture of the graph, they have to be opied in eah di�erent partde�ned by their removal. One of the important features of this method is thatthe deomposition is unique.



Graph deomposition approahes ... 53.2 Algorithmi deompositionWe have introdued our method in [4℄. To implement our program, �rst weomputed a minimal triangulation in linear time O(n.m) followed by the proessof graph deomposition dealt by Tarjan. Thus, we produed all lique minimalseparators of the graph. Then we deompose the graph in a set of atoms. If thereare yles with more than three verties in the graph, they will be retrieved intoatoms. The algoritm deomposition is desribed as below:Deomposition algorithmInput : A graph G = (V, E) and moplex ordering κ.Output : Set of graph omponentsInitialization: i←−1,j←−1.beginFor i=1 to |κ|-1 do ;
Si ← NG(κ(i)); NG(κ(i)) is the neighborhood of iif Si is a lique then

C← i and its neighborhood;
C← G-C;
Comp(j)← C

S

Si;
j←j + 1;

Comp(j)← G (Last omponent);end3.3 Atom deomposition of Small World GraphsA graph is said to be SWG when it simultaneously shows both low diameterand high lustering measure, (i.e., high density of edges in the neighborhood ofeah vertex). Aording to [5℄, the path length L(p) and the lustering oe�ient
C(p) are the two strutural measurements that haraterize the SWGs.The usual approah to visualize a SWG onsists in omputing a deomposi-tion into highly onneted omponents and to o�er to the user an abstrat viewof the network to start with [6℄.We adopt a similar approah exept that we ompute overlapping atoms [4℄instead of disjoint onneted omponents. The atoms of a graph an be de�nedbased on the onept of (a, b)-lique separators.By de�nition an atom A of a graphG ontains at least one omplete separator
S of G, however S is not a separator of A. Atoms overlap if they ontain thesame separator of G.In our experiments, we have observed that graphs have a entral atom withlong yles that involves almost 50% of the verties and numerous peripheralatoms of small size that are almost hordal (yles have less than three elements).To visualize small atoms and their interations on a map, we shall de�ne avalued graph exlusively based on the struture of G = (V, E). Eah atom A



6 Biha,Kaba,Meurs,SanJuanis labeled by the vertex w1 having the highest degree de�ned as the number ofedges linking w1 to another vertex w2 in A. Atoms having the same label aremerged together. The valued graph of atoms that we shall denote by G(At) =
(VAt, EAt, aAt) is de�ned as follows.The vertex of G(At) are pairs of the form (k, l) where k is a vertex of Gk and
l is the label of an atom ontaining k. An edge e = (w1, w2) is de�ned betweentwo verties w1 = (k1, l1) and w2 = (k2, l2) if one of the following happens:1. l1 = l2 and (k1, k2) is an edge of G. In this ase the value sAt of the edge eis set to 1.2. k1 = k2 and there exists a lique separator S in G that separates the atom

l1 from the atom l2. In this ase aAt(w1, w2) is set to the ratio between thenumber of elements in S and the total number of elements in atoms l1 and
l2.The �rst ase orresponds to edges in atoms. To ensure that the relatedverties will not be separated by any lustering proedure, we set the value ofsuh edges to 1, the maximum. The seond ase deals with edges relating opiesof G verties in di�erent atoms. This valued graph an be displayed as desribedhere below.Now to vizualize the entral atom we shall look for optimal minimal separa-tors that allow to split the atom into parts of equal size.4 Graph deomposition by optimal separatorsCombinatorial optimization is a lively �eld of applied mathematis, ombin-ing tehniques from ombinatoris, linear programming, and the theory of al-gorithms, to solve optimization problems over disrete struture. Combinatorialoptimization searhes for an optimum objet in a �nite olletion of objets.Typially, the olletion has a onise representation, like a graph, while thenumber of objets is huge. Combinatorial optimization problems are usually rel-atively easy to formulate mathematially, but most of them are omputationallyhard. The basi idea behind polyhedral tehniques is to derive a good linearformulation of the set solutions by identi�ng linear inequalities that an provedto be neessary in the desription of the onvex hull of feasible solutions.4.1 Polyhedral approah for ab-separator problemFinding a balaned minimum-weight separator in a n-vertex graph that par-titions the graph into two omponents of similar sizes, smaller than 2n/3, isrelevant in many problems. Formally, the vertex separator problem (VSP) anbe stated as follows. The instane onsists of a onneted undireted graph

G = (V, E), with |V | = n, an integer β(n) suh that 1 ≤ β(n) ≤ n and aost ci assoiated with eah vertex i ∈ V . The problem is to �nd a partition



Graph deomposition approahes ... 7
{A, B, C} of V suh that :

E contains no edge (i, j) with i ∈ A , j ∈ B, (1)
max{|A|, |B|} ≤ β(n) , (2)
∑

j∈C

cj is minimized (3)The vertex separator problem (VSP) is NP-hard [7℄. In 2005, Egon Balas andCid De Souza provide the �rst polyhedral study of the vertex separator problem(VSP) [8℄. Reently, Didi Biha and Meurs [in preparation℄, starting from theBalas and De Souza'work, studied the vertex separator polyhedron and givedseveral new valid inequalities for this polyehdron.4.2 The polyhedron of separatorsFor a given graph G = (V, E), we onsider the partiular ase of (VSP) in whihtwo non-adjaent verties a and b are given and we look for a partition {A, B, C}whih satis�es (1) and (2) with a ∈ A, b ∈ B and |C| is minimum. This partiularase is alled ab-separator problem in this paper.We an solve (VSP) by solvingat most n(n−2)
2 ab-separator problems.Given the non-adjaent verties a and b, the inidene vetor of a partition

{A, B, C} of V whih satis�es (1) and (2) with a ∈ A and b ∈ B is
X = (x1a, ..., x(n−2)a, x1b, ..., x(n−2)b) ∈ {0, 1}2(n−2), with xia = 1 ⇔ i ∈ A,
xib = 1 ⇔ i ∈ B, ∀i ∈ V \ {a, b}.Let Pab be the polyhedron assoiated to the ab-separator,i.e. Pab = Conv

{

X ∈ R2(n−2)
} : X is an inidene vetor for some ab-separatorpartition {A, B, C}.Let Γab be a simple hain between a and b. Let I(Γab) be the set of intern vertiesof Γab. The inequality ∑

i∈I(Γab)

(xia + xib) ≤ |I(Γab)| − 1 is valid for Pab (4.2).In fat, if {A, B, C} is an ab-separator partition, then every hain from a to bontains at least one vertex of C. For all ouple of non-adjaent verties (i, j) ∈
V , let αij be the maximum number of disjoint hains between i and j.4.3 ModelOur model is formally desribed as follows:Data :� A onneted undireted graph G = (V, E), with |V | = n,� An integer β(n)� a ∈ A, b ∈ B virtual verties,� αmin = Min{αij , i ∈ V, j ∈ V, (i, j) /∈ E}



8 Biha,Kaba,Meurs,SanJuanThe (VSP) an be formulated as the following mixed integer programming :
Maximize

n
∑

i=1

(xia + xib)

s.c. :

xia ∈ {0, 1}, ∀i ∈ V (4)
xia + xib ≤ 1, ∀i ∈ V (5)
xia + xjb ≤ 1, ∀(i, j) ∈ E (6)
xja + xib ≤ 1, ∀(i, j) ∈ E (7)

n
∑

i=1

(xia + xib) ≤ n − αmin (8)
1 ≤

n
∑

i=1

xia ≤ ⌊
n − αmin

2
⌋ (9)

1 ≤
n

∑

i=1

xib ≤ β(n) , 1 ≤
n

∑

i=1

xia ≤ β(n), (10)The onstraint (5) is valid sine A and B are disjoint sets. The onstraints(6) and (7) are valid sine there is no edge between the two sets A et B. Theonstraint (8) omes from (4.2). Without loss of generality, we may assume that
|A| ≤ |B|. Furthermore, |A| + |B| ≤ n − αmin, thus |A| ≤ ⌊n−αmin

2 ⌋, that isorresponding to the onstraint (9) in our model. The onstraints (10) are validsine the ab-separators satisfy (2).5 AppliationBased on graph deomposition tehnique into atoms desribed here above, themethodology used here for viewing results merges two graphs into the samevisual output: the graph of term-term assoiations and of variation links and,a seond graph of author-term assoiation (ATCA here below), enabling us tolink authors to the lusters of terms used (researh topis) in their publiations.5.1 Methodology summaryThe method works in seven phases desribed hereafter:1. Term extration and seletion: noun phrases (NPs) are extrated fromISI abstrats. NPs are merged together based on COMP relations desribedin setion 2: spelling variants, left expansions, insertions, modi�er substi-tution and WordNet synonyms. The resulting lusters are the onnetedomponents of the graph where verties are terms and there is one edge be-tween eah term and its variants. We shall refer to these lusters as Term



Graph deomposition approahes ... 9omponents. Only Term omponents with at least two verties are onsid-ered. Eah of these Term omponents are labelled by the NP having the mostnumber of variants. Supplementary NPs are onsidered based on CLASS re-lations. These relations are: left expansions and head substitutions on NPswith at least three words. NPs involved in suh variations are added as sup-plementary Term omponents but not lustered. Eah of them is isolated ina separated omponent. This a way to selet NPs based on surfae linguistivariation.2. Terminology graph extration: assoiations are omputed between Termomponents or authors, this results in the extration of a new graph whereverties an be both previous term omponents or authors. An edge is drawnbetween two of these verties whenever a valid assoiation is found. Assoi-ations are omputed in the following way. For eah omponent or author x,we denote by D(x) the set of douments where abstrats have at least oneNP in x if x is a omponent or where x is one of the authors otherwise. Thentwo verties c1 and c2 are assoiated if there are at least two douments in
D(c1).D(c2). In this ase, an equivalene E(c1, c2) oe�ient is omputedbetween c1 and c2 in the following way:

E(c1, c2) =
|D(c1).D(c2)|2

|D(c1)|.|D(c2)|Only assoiations for whih E(c1, c2) > 0.05 are onsidered. Let us all thisgraph ATCA (Assoiations between Term Components and Authors).3. Graph omponents: onneted omponents of ATCA are omputed. It isusual that in this kind of graph, there are lots of small omponents and onlyone really big omponent that ontains more than two thirds of the verties.We shall refer to it as the main ATCA omponent.4. Atom deomposition: the main ATCA omponent is deomposed intoatoms. An atom is a sub-graph where there is no lique separator. Againin this kind of graph, it often ours that there is a entral huge atom andseveral small ones. We shall refer to the biggest atom as the entral ATCAatom.5. peripheral atom layout: peripheral atoms and their interations are visu-alized by generating the atom graph as desribed in setion 3.3. Sine atomsoverlap, eah atom is labelled by its entral vertex (the vertex with the high-est degree). A vertex in several atoms is dupliated. Eah opy is labelled bythe vertex label and the atom label. An edge is drawn between two opiesof ATCA verties if they share the same atom label or if they are opies inseparated atoms that involve a ommon ATCA separator.6. entral atom separation: we also implemented the splitting of the entralatom based on optimal separators as desribed in �4.7. Central atom visualisation: the entral atom omponenrts are visualizedbased on Single Link Clustering that groups together verties whose asso-iation equivalene oe�ient between is higher than any other one in theneighbourhood (loal maximums). This allows us to redue the size whilepreserving the graph struture.



10 Biha,Kaba,Meurs,SanJuan5.2 ResultsWe experimented this method on the same orpus as [9℄ on terrorism extratedfrom ISI bibliographi database. In this orpus, 57, 855 NPs were extrated from
3, 366 ISI abstrats. These NPs were lustered into 3, 293 Term omponents withat least two NPs. The maximal size of Term omponents is 30. 8, 357 supple-mentary terms having at least one CLASS variant are added to the set of Termomponents. The ATCA graph has 16, 258 edges. Its main omponent has 9, 324edges over 1, 070 verties. This omponent involve 489 atoms. The entral atomhas 2, 070 edges over 307 verties and an be splitted in three parts using twoseparators of four verties eah. All the other atoms have less than 29 verties.Upon loser inspetion, these three sub-networks orroborate the �ndings inChen's study (2006) on the same orpus but on a shorter period (1990-2003). In[9℄, three major groups of lusters were identi�ed by author o-itation and termnetworks using CiteSpae II: a luster on `body injuries in terrorist bombing',a seond bigger luster on `health are response to the threat of biologial andhemial weapons', a third biggest and more reent luster on pyshologial andpyshiatri impats of the september 11, 2001 terrorist attak with terms like`United States' and `posttraumati stress disorder' (PTSD) being very promi-nent. We found a similar demaration in the internal struture of the entralatom that has the following separators:1. `health are provider', `spei� linial', `AU: Tonat_K' and `physial injury'.2. `publi health', `AU: Tray_M', `terrorist attak vitim' and `AU: Pfe�er-baum_B'.Figure 1 shows the atom graph of the terminology graph omputed on thisorpus and its entral atom before applying the deomposition based on optimalminimal separators.6 ConlusionTo the best of our knowledge, this paper is the �rst attempt to apply graph atomdeomposition to knowledge domain mapping [11, ?,12℄. The advantage of atomgraph deomposition is that it is unique sine it is based on the intrinsi strutureof the graph. Its main drawbak is that small atoms do not always exists in agraph. The results obtained on the orpus used in this experiment tend to showthat: atom deomposition is tratable on a large orpus of douments and thatentral atoms an be separated using optimal separators.Previous experimentations on other bibliographi orpura dealing with Infor-mation Retrieval, genomis or Organi Chemistry have on�rmed these results.Referenes1. Bales ME., Johnson SB.: Graph theoreti modeling of large-sale semanti net-works. J. Biomed Inform. 39(4) (2006) 451�464
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Fig. 1. Atom graph (left) and its entral atom (rigth)2. SanJuan, E., Ibekwe-SanJuan, F.: Text mining without doument ontext. Infor-mation Proessing and Management 42 (2006) 1532�15523. Ibekwe-SanJuan, F.: A linguisti and mathematial method for mapping thematitrends from texts. In: Pro. of the 13th European Conferene on Arti�ial Intelli-gene (ECAI), Brighton, UK (1998) 170�1744. Berry, A., Kaba, B., Nadif, M., SanJuan, E., Sigayret, A.: Classi�ation et désar-tiulation de graphes de termes. In: Pro. of the 7th International onferene onTextual Data Statistial Analysis (JADT 2004), Louvain-la-Neuve, Belgium (2004)160�1705. Ferrer-i-Canho, R., Sole, R.V.: The small world of human language. Proeedingsof The Royal Soiety of London. Series B, Biologial Sienes 268(1482) (2001)2261�22656. Auber, D., Chiriota, Y., Jourdan, F., Melanon, G.: Multisale visualization ofsmall world networks. In: IEEE Symposition on Information Visualisation, IEEEComputer Soiety (2003) 75�817. Bui, T., Fukuyama, J., Jones, C.: The planar vertex separator problem : Complex-ity and algorithms. Manusript (1994)8. Balas, E., de Souza, C.C.: The vertex separator problem: a polyhedral investiga-tion. Math. Program. 103(3) (2005) 583�6089. Chen, C.: Citespae ii: Deteting and visualizing emerging trends and transientpatterns in sienti� literature. JASIST 57(3) (2006) 359�377



12 Biha,Kaba,Meurs,SanJuan10. Neumann, A., Gräber, W., Tergan, S.O.: Paris - visualizing ideas and informationin a resoure-based learning senario. In: Knowledge and Information Visualization.(2005) 256�28111. Braam, R., Moed, H., A., A.V.R.: Mapping siene by ombined o-itation andword analysis. 2. dynamial aspets. Journal of the Amerian Soiety for Informa-tion Siene 42(2) (1991) 252�26612. Shi�rin, R., Börner, K.: Mapping knowledge domains. Publiation of the NationalAademy of Siene (PNAS) 101(suppl 1) (2004) 5183 � 5185


