
Graph de
omposition approa
hes for terminologygraphsMohamed Didi Biha1, Bangaly Kaba2, Marie-Jean Meurs3, and Eri
SanJuan3 ⋆⋆

1 LANLG, 33 rue Louis Pasteur, 84000 Avignon, Fran
emohamed.didi-biha�univ-avignon.fr
2 LIMOS, Université Blaise Pas
al Clermont 2, 63177 AUBIERE 
edex, Fran
ekaba�isima.fr

3 LIA, Université d'Avignon, BP 1228 84911 Avignon, Cedex 9, Fran
e{marie-jean.meurs,eri
.sanjuan}�univ-avignon.frAbstra
t. We propose a graph-based de
omposition methodology ofa network of do
ument features represented by a terminology graph.The graph is automati
ally extra
ted from raw data based on NaturalLanguage Pro
essing te
hniques implemented in the TermWat
h system.These graphs are Small Worlds. Based on 
lique minimal separators andthe asso
iated graph of atoms: a subgraph without 
lique separator, weshow that the terminology graph 
an be divided into a 
entral kernelwhi
h is a single atom and a periphery made of small atoms. Moreover,the 
entral kernel 
an be separated based on small optimal minimal sep-arators.Key words: graph algorithms, graph de
omposition, polyhedral approa
h, textmining, topi
 vizualisation1 Introdu
tionTerminology graphs that in
lude expli
itly de�ned properties and relationshipsdeveloped for human-
urated semanti
 networks, su
h as 
ontrolled ontologies,are used for organizing and 
ommuni
ating information. At the 
ore of these ter-minologies are dis
rete elements of knowledge, or entities, whi
h 
arry meaning.The way in whi
h these entities are arranged and en
oded in ele
troni
 formatis a key 
on
ern in informati
s [1℄.The TermWat
h system [2℄ aims to automati
ally extra
t a terminology graphfrom texts based on Natural Language Pro
essing (NLP) approa
hes originallyintrodu
ed in [3℄.In this paper we show how these graphs 
an be stru
tured in 
oherent sub-networks in order to allow its visualisation and to approximate a real 
on
eptnetwork. For that we use two re
ent graph de
omposition approa
hes. The �rst
⋆⋆ Corresponding author.



2 Biha,Kaba,Meurs,SanJuanone is based on the 
on
ept of graph of atoms (an atom is a subgraph with-out 
lique separator). The important point is that this de
omposition is unique.However, there is no upper limit to atom size and we have observed that termi-nology graphs are made of small atoms gravitating at the peripheral of a huge
entral one. It is ne
essary to break this 
entral atom into equal parts withoutloosing its internal stru
ture. We show that this 
an be e�
iently a

omplishusing optimal separators.The rest of the paper is organised as follows. In se
tion 2 we re
all the fea-tures of terminology graphs extra
ted using TermWat
h system. In se
tion 3, weformally de�ne the pro
ess of graph de
omposition into atoms. In se
tion 4 weshow how optimal separators 
an be found. In se
tion 5 we experiment the wholepro
ess on a real 
orpus. Finally, we 
on
lude on related work and perspe
tives.2 TermWat
h systemThis system 
omprises three modules: a term extra
tor, a relation identi�erwhi
h yields the terminologi
al network and a visualisation module.2.1 Term extra
tionThis module performs term extra
tion based on shallow NLP, using the LTPOStagger and LTChunker4. LTChunker identi�es simplex noun phrases (NPs), i.e.,NPs without prepositional atta
hments. In order to extra
t more 
omplex terms,we wrote 
ontextual rules to identify 
omplex terminologi
al NPs, i.e. those witha prepositional atta
hment. The number of words in a term is not limited. This
hoi
e is based on the observation that most 
on
epts in the te
hni
al domainare long multi-word terms.2.2 Identifying semanti
 nearest neighbours (S-NN) of termsThis module identi�es the di�erent semanti
 variants of the same term basedon surfa
e and internal linguisti
 operations between MWTs and the use of anexternal resour
e, here WordNet.Morphologi
al variants are identi�ed using the LTPOS tagger. Lexi
al vari-ants are identi�ed based on word 
hanges in terms. However, the de�nition oflexi
al variants is restri
ted in order to allow the 
hange of only one word in thesame position so as to avoid generating spurious relations. The 
hange 
an takepla
e either in a modi�er position (T-
ell line / �broplast line) or in the headposition (T-
ell line / T-
ell lymphoma). The head in a noun phrase is the termfo
us (subje
t) while the modi�er plays the role of a quali�er. Synta
ti
 vari-ants involve stru
tural 
hanges in terms, for instan
e a permutation: �retrievalof information� and �information retrieval �. Other synta
ti
 operations 
alledexpansions, involve the addition of modi�er or head words in a term. Modi�er4 (C) Andrei Mikheev 1996�2000 (C) LTG, University of Edinburgh 1996�2000.
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hes ... 3expansions are subdivided into �Insertions� and �Left-expansions�. Head expan-sions are either expansions solely on the head position of a term or double ex-pansions (both in the modi�er and head position). Semanti
 variants are usedto identify more semanti
ally bound terms amongst lexi
al substitutions as thelatter 
an be noisy, espe
ially on binary terms. For instan
e, a 
hain of lexi
alhead substitutions 
an link all of these terms: T-
ell line, T-
ell lineage, T-
elllymphoma, T-
ell lysate, T-
ell malignan
y, T-
ell maturation, T-
ell mitogen,T-
ell mitogenesis. This 
an 
apture semanti
ally 
lose terms like �T 
ell line�and �T 
ell lineage� but this would be purely a

idental. To identify semanti
substitutions amongst the lexi
al ones, WordNet is used to �lter those variantswhere the substituted words are in a WordNet relation.5 We distinguish Word-Net substitutions a

ording to the two grammati
al fun
tions of the substitutedword: head or modi�er.The variations des
ribed above 
an be further re�ned a

ording to the num-ber and position of inserted words for expansion variants. Thus we distinguishfurther between strong and weak expansions. Strong expansions are those vari-ants where only one word is added (B 
ell lymphoma line / human B 
ell lym-phoma line) while those involving the addition of more than one word are 
onsid-ered as weak expansion variants (TSH re
eptor / TSH re
eptor (TSHR)-spe
i�
T 
ell line).2.3 Graph visualisation moduleFor visualization purposes, graphs are 
lustered. For this task, we use a variantof the single link 
lustering (SLC), 
alled CPCL (Classi�
ation by PreferentialClustered Link) originally introdu
ed in [3℄ to form 
lusters of keywords relatedby geodesi
 paths made of strongth asso
iations. The advantages of SLC 
lus-tering are that it produ
es a unique output and that it runs in linear time onthe number of edges. The CPCL variant also has these properties. It merges it-eratively 
lusters of keywords related by an asso
iation strongest than any otherin the external neighborhood. In other words, CPCL works on lo
al maximaledges instead of absolute maximal values like in standard SLC. CPCL outputis unique su
h as in SLC while redu
ing the 
hain e�e
t. We refer the reader to[4℄ for a detailed des
ription in the graph formalism. The CPCL algorithm hasbeen optimised to run in O(|E|) time, where |E| is the number of edges of thegraph.Finally, using the intera
tive interfa
e AiSee (http://www.aisee.
om) and itsoptimized bi-s
ale for
e dire
ted layout, we obtain a two level a

ess to thenetwork of terms and 
lusters.AiSee needs as input a �le in Graph Des
ription Language (GDL). Our GDLgenerator uses edge width to visualize the strength of the link. Clusters are then5 Despite the fa
t that general resour
es 
annot 
apture the expli
it 
on
eptual re-lation between spe
ialized domain terms, we still highly improved the pre
ision ofthe substitutions variants using WordNet, in the sense that 97% of the WordNetsubstitutions linked semanti
ally related terms.



4 Biha,Kaba,Meurs,SanJuanrepresented by ovals whose size depends on the number of 
lustered verti
es. Fi-nally, spe
ial 
lusters 
an be unfolded in a wrapped form that allows to visualizethe transitions to other 
lusters.3 Atom Graph de
omposition3.1 Introdu
tion to graph de
ompositionWe will re
all some preliminary graph notions whi
h will be helpful to follow ourapproa
h.A graph is denoted G = (V, E) where V is a �nite set of verti
es and E isa �nite set of edges. The graphs on whi
h we work are undire
ted. G(A) is thesubgraph indu
ed by a vertex set A(in
luded in V ). A 
lique in a graph is aset of pairwise adja
ent verti
es. A 
onne
ted 
omponent graph is a maximalvertex set wi
h indu
es a maximal 
onne
ted subgraph. A tree is a 
onne
tedgraph without 
y
le. A graph is said to be 
hordal graph i� there is no 
hord-less 
y
le of length more than 3. In the simple graphs that are the trees, thearti
ulations are the verti
es whi
h are not leaves (verti
es whi
h have at max-imum one in
ident edge). The removal of an arti
ulation vertex de�nes severalsubgraphs. To de
ompose a tree, we 
opy an arti
ulation in ea
h subgraph itsremoval de�nes. Graphs subja
ent to 
orpus are not trees. To de
ompose them,we use instead of arti
ulation vertex in the 
ase of tree, the groups of verti
es
alled `minimal separators'. A subset S of verti
es is a minimal separator of a
onne
ted graph G = (V, E) if G(V −S) has at least two 
onne
ted 
omponents.In general, a graph has an exponential number of minimal separators. However,it has been proved that the number of 
lique minimal separators (separatorsthat are 
ompletely 
onne
ted) is weak and less than the number of verti
es. Infa
t the de
omposition of the graph and the enumeration of all 
lique minimalseparators 
an be done in linear time O(|V ||E|). This has been dealt by Tarjanin [?℄. This pro
ess is based on minimal triangulation algorithms that embed agraph into a 
hordal graph by the addition of an in
lusion-minimal set of edges.Thus we propose an algorithmi
 pro
ess whi
h de
omposes a graph of termssubja
ent to a given 
orpus of textual data into 
onne
ted groups of terms whi
hare 
alled `atoms' and that do not have 
lique separators. One of the interestingadvantages of this de
omposition is that atoms we de�ne are not disjoint, but
an have an overlap. The pro
ess of de
omposition 
onsists in 
opying a `
liqueminimal separator' into di�erent parts of the graph, so that ea
h overlap betweentwo `atoms' is a `
lique minimal separator'. Previous works have proved thatthe interse
tion graphs of subtrees in trees are exa
tly the 
hordal graphs [?℄.In our appli
ation, we have found that our graphs of atoms are 
hordal. Tokeep the stru
ture of the graph, they have to be 
opied in ea
h di�erent partde�ned by their removal. One of the important features of this method is thatthe de
omposition is unique.
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 de
ompositionWe have introdu
ed our method in [4℄. To implement our program, �rst we
omputed a minimal triangulation in linear time O(n.m) followed by the pro
essof graph de
omposition dealt by Tarjan. Thus, we produ
ed all 
lique minimalseparators of the graph. Then we de
ompose the graph in a set of atoms. If thereare 
y
les with more than three verti
es in the graph, they will be retrieved intoatoms. The algoritm de
omposition is des
ribed as below:De
omposition algorithmInput : A graph G = (V, E) and moplex ordering κ.Output : Set of graph 
omponentsInitialization: i←−1,j←−1.beginFor i=1 to |κ|-1 do ;
Si ← NG(κ(i)); NG(κ(i)) is the neighborhood of iif Si is a 
lique then

C← i and its neighborhood;
C← G-C;
Comp(j)← C

S

Si;
j←j + 1;

Comp(j)← G (Last 
omponent);end3.3 Atom de
omposition of Small World GraphsA graph is said to be SWG when it simultaneously shows both low diameterand high 
lustering measure, (i.e., high density of edges in the neighborhood ofea
h vertex). A

ording to [5℄, the path length L(p) and the 
lustering 
oe�
ient
C(p) are the two stru
tural measurements that 
hara
terize the SWGs.The usual approa
h to visualize a SWG 
onsists in 
omputing a de
omposi-tion into highly 
onne
ted 
omponents and to o�er to the user an abstra
t viewof the network to start with [6℄.We adopt a similar approa
h ex
ept that we 
ompute overlapping atoms [4℄instead of disjoint 
onne
ted 
omponents. The atoms of a graph 
an be de�nedbased on the 
on
ept of (a, b)-
lique separators.By de�nition an atom A of a graphG 
ontains at least one 
omplete separator
S of G, however S is not a separator of A. Atoms overlap if they 
ontain thesame separator of G.In our experiments, we have observed that graphs have a 
entral atom withlong 
y
les that involves almost 50% of the verti
es and numerous peripheralatoms of small size that are almost 
hordal (
y
les have less than three elements).To visualize small atoms and their intera
tions on a map, we shall de�ne avalued graph ex
lusively based on the stru
ture of G = (V, E). Ea
h atom A



6 Biha,Kaba,Meurs,SanJuanis labeled by the vertex w1 having the highest degree de�ned as the number ofedges linking w1 to another vertex w2 in A. Atoms having the same label aremerged together. The valued graph of atoms that we shall denote by G(At) =
(VAt, EAt, aAt) is de�ned as follows.The vertex of G(At) are pairs of the form (k, l) where k is a vertex of Gk and
l is the label of an atom 
ontaining k. An edge e = (w1, w2) is de�ned betweentwo verti
es w1 = (k1, l1) and w2 = (k2, l2) if one of the following happens:1. l1 = l2 and (k1, k2) is an edge of G. In this 
ase the value sAt of the edge eis set to 1.2. k1 = k2 and there exists a 
lique separator S in G that separates the atom

l1 from the atom l2. In this 
ase aAt(w1, w2) is set to the ratio between thenumber of elements in S and the total number of elements in atoms l1 and
l2.The �rst 
ase 
orresponds to edges in atoms. To ensure that the relatedverti
es will not be separated by any 
lustering pro
edure, we set the value ofsu
h edges to 1, the maximum. The se
ond 
ase deals with edges relating 
opiesof G verti
es in di�erent atoms. This valued graph 
an be displayed as des
ribedhere below.Now to vizualize the 
entral atom we shall look for optimal minimal separa-tors that allow to split the atom into parts of equal size.4 Graph de
omposition by optimal separatorsCombinatorial optimization is a lively �eld of applied mathemati
s, 
ombin-ing te
hniques from 
ombinatori
s, linear programming, and the theory of al-gorithms, to solve optimization problems over dis
rete stru
ture. Combinatorialoptimization sear
hes for an optimum obje
t in a �nite 
olle
tion of obje
ts.Typi
ally, the 
olle
tion has a 
on
ise representation, like a graph, while thenumber of obje
ts is huge. Combinatorial optimization problems are usually rel-atively easy to formulate mathemati
ally, but most of them are 
omputationallyhard. The basi
 idea behind polyhedral te
hniques is to derive a good linearformulation of the set solutions by identi�ng linear inequalities that 
an provedto be ne
essary in the des
ription of the 
onvex hull of feasible solutions.4.1 Polyhedral approa
h for ab-separator problemFinding a balan
ed minimum-weight separator in a n-vertex graph that par-titions the graph into two 
omponents of similar sizes, smaller than 2n/3, isrelevant in many problems. Formally, the vertex separator problem (VSP) 
anbe stated as follows. The instan
e 
onsists of a 
onne
ted undire
ted graph

G = (V, E), with |V | = n, an integer β(n) su
h that 1 ≤ β(n) ≤ n and a
ost ci asso
iated with ea
h vertex i ∈ V . The problem is to �nd a partition
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{A, B, C} of V su
h that :

E contains no edge (i, j) with i ∈ A , j ∈ B, (1)
max{|A|, |B|} ≤ β(n) , (2)
∑

j∈C

cj is minimized (3)The vertex separator problem (VSP) is NP-hard [7℄. In 2005, Egon Balas andCid De Souza provide the �rst polyhedral study of the vertex separator problem(VSP) [8℄. Re
ently, Didi Biha and Meurs [in preparation℄, starting from theBalas and De Souza'work, studied the vertex separator polyhedron and givedseveral new valid inequalities for this polyehdron.4.2 The polyhedron of separatorsFor a given graph G = (V, E), we 
onsider the parti
ular 
ase of (VSP) in whi
htwo non-adja
ent verti
es a and b are given and we look for a partition {A, B, C}whi
h satis�es (1) and (2) with a ∈ A, b ∈ B and |C| is minimum. This parti
ular
ase is 
alled ab-separator problem in this paper.We 
an solve (VSP) by solvingat most n(n−2)
2 ab-separator problems.Given the non-adja
ent verti
es a and b, the in
iden
e ve
tor of a partition

{A, B, C} of V whi
h satis�es (1) and (2) with a ∈ A and b ∈ B is
X = (x1a, ..., x(n−2)a, x1b, ..., x(n−2)b) ∈ {0, 1}2(n−2), with xia = 1 ⇔ i ∈ A,
xib = 1 ⇔ i ∈ B, ∀i ∈ V \ {a, b}.Let Pab be the polyhedron asso
iated to the ab-separator,i.e. Pab = Conv

{

X ∈ R2(n−2)
} : X is an in
iden
e ve
tor for some ab-separatorpartition {A, B, C}.Let Γab be a simple 
hain between a and b. Let I(Γab) be the set of intern verti
esof Γab. The inequality ∑

i∈I(Γab)

(xia + xib) ≤ |I(Γab)| − 1 is valid for Pab (4.2).In fa
t, if {A, B, C} is an ab-separator partition, then every 
hain from a to b
ontains at least one vertex of C. For all 
ouple of non-adja
ent verti
es (i, j) ∈
V , let αij be the maximum number of disjoint 
hains between i and j.4.3 ModelOur model is formally des
ribed as follows:Data :� A 
onne
ted undire
ted graph G = (V, E), with |V | = n,� An integer β(n)� a ∈ A, b ∈ B virtual verti
es,� αmin = Min{αij , i ∈ V, j ∈ V, (i, j) /∈ E}



8 Biha,Kaba,Meurs,SanJuanThe (VSP) 
an be formulated as the following mixed integer programming :
Maximize

n
∑

i=1

(xia + xib)

s.c. :

xia ∈ {0, 1}, ∀i ∈ V (4)
xia + xib ≤ 1, ∀i ∈ V (5)
xia + xjb ≤ 1, ∀(i, j) ∈ E (6)
xja + xib ≤ 1, ∀(i, j) ∈ E (7)

n
∑

i=1

(xia + xib) ≤ n − αmin (8)
1 ≤

n
∑

i=1

xia ≤ ⌊
n − αmin

2
⌋ (9)

1 ≤
n

∑

i=1

xib ≤ β(n) , 1 ≤
n

∑

i=1

xia ≤ β(n), (10)The 
onstraint (5) is valid sin
e A and B are disjoint sets. The 
onstraints(6) and (7) are valid sin
e there is no edge between the two sets A et B. The
onstraint (8) 
omes from (4.2). Without loss of generality, we may assume that
|A| ≤ |B|. Furthermore, |A| + |B| ≤ n − αmin, thus |A| ≤ ⌊n−αmin

2 ⌋, that is
orresponding to the 
onstraint (9) in our model. The 
onstraints (10) are validsin
e the ab-separators satisfy (2).5 Appli
ationBased on graph de
omposition te
hnique into atoms des
ribed here above, themethodology used here for viewing results merges two graphs into the samevisual output: the graph of term-term asso
iations and of variation links and,a se
ond graph of author-term asso
iation (ATCA here below), enabling us tolink authors to the 
lusters of terms used (resear
h topi
s) in their publi
ations.5.1 Methodology summaryThe method works in seven phases des
ribed hereafter:1. Term extra
tion and sele
tion: noun phrases (NPs) are extra
ted fromISI abstra
ts. NPs are merged together based on COMP relations des
ribedin se
tion 2: spelling variants, left expansions, insertions, modi�er substi-tution and WordNet synonyms. The resulting 
lusters are the 
onne
ted
omponents of the graph where verti
es are terms and there is one edge be-tween ea
h term and its variants. We shall refer to these 
lusters as Term
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omponents. Only Term 
omponents with at least two verti
es are 
onsid-ered. Ea
h of these Term 
omponents are labelled by the NP having the mostnumber of variants. Supplementary NPs are 
onsidered based on CLASS re-lations. These relations are: left expansions and head substitutions on NPswith at least three words. NPs involved in su
h variations are added as sup-plementary Term 
omponents but not 
lustered. Ea
h of them is isolated ina separated 
omponent. This a way to sele
t NPs based on surfa
e linguisti
variation.2. Terminology graph extra
tion: asso
iations are 
omputed between Term
omponents or authors, this results in the extra
tion of a new graph whereverti
es 
an be both previous term 
omponents or authors. An edge is drawnbetween two of these verti
es whenever a valid asso
iation is found. Asso
i-ations are 
omputed in the following way. For ea
h 
omponent or author x,we denote by D(x) the set of do
uments where abstra
ts have at least oneNP in x if x is a 
omponent or where x is one of the authors otherwise. Thentwo verti
es c1 and c2 are asso
iated if there are at least two do
uments in
D(c1).D(c2). In this 
ase, an equivalen
e E(c1, c2) 
oe�
ient is 
omputedbetween c1 and c2 in the following way:

E(c1, c2) =
|D(c1).D(c2)|2

|D(c1)|.|D(c2)|Only asso
iations for whi
h E(c1, c2) > 0.05 are 
onsidered. Let us 
all thisgraph ATCA (Asso
iations between Term Components and Authors).3. Graph 
omponents: 
onne
ted 
omponents of ATCA are 
omputed. It isusual that in this kind of graph, there are lots of small 
omponents and onlyone really big 
omponent that 
ontains more than two thirds of the verti
es.We shall refer to it as the main ATCA 
omponent.4. Atom de
omposition: the main ATCA 
omponent is de
omposed intoatoms. An atom is a sub-graph where there is no 
lique separator. Againin this kind of graph, it often o

urs that there is a 
entral huge atom andseveral small ones. We shall refer to the biggest atom as the 
entral ATCAatom.5. peripheral atom layout: peripheral atoms and their intera
tions are visu-alized by generating the atom graph as des
ribed in se
tion 3.3. Sin
e atomsoverlap, ea
h atom is labelled by its 
entral vertex (the vertex with the high-est degree). A vertex in several atoms is dupli
ated. Ea
h 
opy is labelled bythe vertex label and the atom label. An edge is drawn between two 
opiesof ATCA verti
es if they share the same atom label or if they are 
opies inseparated atoms that involve a 
ommon ATCA separator.6. 
entral atom separation: we also implemented the splitting of the 
entralatom based on optimal separators as des
ribed in �4.7. Central atom visualisation: the 
entral atom 
omponenrts are visualizedbased on Single Link Clustering that groups together verti
es whose asso-
iation equivalen
e 
oe�
ient between is higher than any other one in theneighbourhood (lo
al maximums). This allows us to redu
e the size whilepreserving the graph stru
ture.



10 Biha,Kaba,Meurs,SanJuan5.2 ResultsWe experimented this method on the same 
orpus as [9℄ on terrorism extra
tedfrom ISI bibliographi
 database. In this 
orpus, 57, 855 NPs were extra
ted from
3, 366 ISI abstra
ts. These NPs were 
lustered into 3, 293 Term 
omponents withat least two NPs. The maximal size of Term 
omponents is 30. 8, 357 supple-mentary terms having at least one CLASS variant are added to the set of Term
omponents. The ATCA graph has 16, 258 edges. Its main 
omponent has 9, 324edges over 1, 070 verti
es. This 
omponent involve 489 atoms. The 
entral atomhas 2, 070 edges over 307 verti
es and 
an be splitted in three parts using twoseparators of four verti
es ea
h. All the other atoms have less than 29 verti
es.Upon 
loser inspe
tion, these three sub-networks 
orroborate the �ndings inChen's study (2006) on the same 
orpus but on a shorter period (1990-2003). In[9℄, three major groups of 
lusters were identi�ed by author 
o-
itation and termnetworks using CiteSpa
e II: a 
luster on `body injuries in terrorist bombing',a se
ond bigger 
luster on `health 
are response to the threat of biologi
al and
hemi
al weapons', a third biggest and more re
ent 
luster on pys
hologi
al andpys
hiatri
 impa
ts of the september 11, 2001 terrorist atta
k with terms like`United States' and `posttraumati
 stress disorder' (PTSD) being very promi-nent. We found a similar demar
ation in the internal stru
ture of the 
entralatom that has the following separators:1. `health 
are provider', `spe
i�
 
lini
al', `AU: Tonat_K' and `physi
al injury'.2. `publi
 health', `AU: Tra
y_M', `terrorist atta
k vi
tim' and `AU: Pfe�er-baum_B'.Figure 1 shows the atom graph of the terminology graph 
omputed on this
orpus and its 
entral atom before applying the de
omposition based on optimalminimal separators.6 Con
lusionTo the best of our knowledge, this paper is the �rst attempt to apply graph atomde
omposition to knowledge domain mapping [11, ?,12℄. The advantage of atomgraph de
omposition is that it is unique sin
e it is based on the intrinsi
 stru
tureof the graph. Its main drawba
k is that small atoms do not always exists in agraph. The results obtained on the 
orpus used in this experiment tend to showthat: atom de
omposition is tra
table on a large 
orpus of do
uments and that
entral atoms 
an be separated using optimal separators.Previous experimentations on other bibliographi
 
orpura dealing with Infor-mation Retrieval, genomi
s or Organi
 Chemistry have 
on�rmed these results.Referen
es1. Bales ME., Johnson SB.: Graph theoreti
 modeling of large-s
ale semanti
 net-works. J. Biomed Inform. 39(4) (2006) 451�464
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Fig. 1. Atom graph (left) and its 
entral atom (rigth)2. SanJuan, E., Ibekwe-SanJuan, F.: Text mining without do
ument 
ontext. Infor-mation Pro
essing and Management 42 (2006) 1532�15523. Ibekwe-SanJuan, F.: A linguisti
 and mathemati
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