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tThis paper presents a three-level stru
turing of multiword terms (MWTs) basing onlexi
al in
lusion, WordNet similarity and a 
lustering approa
h. Term 
lustering byautomati
 data analysis methods o�ers an interesting way of organizing a domain'sknowledge stru
tures, useful for several information-oriented tasks like s
ien
e andte
hnology wat
h, textmining, 
omputer-assisted ontology population, Question An-swering (Q-A). This paper explores how this three-level term stru
turing brings tolight the knowledge stru
tures from a 
orpus of genomi
s and 
ompares the mappingof the domain topi
s against a hand-built ontology (the GENIA ontology). Ways ofintegrating the results into a Q-A system are dis
ussed.Key words: Term variation, Automati
 terminology stru
turing, DomainKnowledge Mapping, Clustering, Text mining, Question Answering.1 Introdu
tionIt is a well-known fa
t that the majority of terminologi
al units are multi-word terms(hen
eforth MWTs). Current resear
h on 
omputational terminology has empha-sized the need to dispose of stru
tured terminology for several appli
ations. To thisend, a wealth of resear
h has been dire
ted toward identifying and organizing se-manti
ally related MWTs. The two families of approa
hes used for this task aredistributional (statisti
al) and symboli
 (linguisti
s) methods. Distributional simi-larity is taken as an indi
ation of semanti
 similarity. The fo
us of many studies hasbeen in 
reating 
lasses of \similar" words: (Chur
h and Hanks, 1990; Ushioda, 1996;Nenadi�
 et al., 2002; Lin, 1998). All these methods result in a quanti�ed similaritymeasure with the exa
t nature of the relations left unde�ned, and so heterogeneousor even antonymous 
on
epts may end up in the same 
luster. Lin (1998) 
reatessimilarity 
lusters by grouping words that o

ur in the same dependen
y relationsin the SUSANNE 
orpus. By way of example, the most frequent words asso
iatedPreprint submitted to Elsevier S
ien
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with the noun \brief" were \aÆdavit, petition, memorandum, motion, lawsuit, de-position, slight, prospe
tus, do
ument, paper" whi
h all hold di�erent relations withthe initial word, in
luding 
ollo
ational ones.Alternatively, linguisti
 patterns are used to identify 
ontexts whi
h embody mor-phologi
al, synta
ti
 or semanti
 relations between MWTs. The linguisti
 approa
h
an be subdivided into two main approa
hes: exogeneous methods relying on ex-ternal semanti
 resour
e and endogeneous ones relying solely on eviden
e from 
or-pora. Resour
es for exogeneous approa
hes are di
tionaries (Hamon and Nazarenko,2001), thesauri or ontologies. They allow to bootstrap semanti
 relations a
quisitionfrom 
orpora but 
learly are dependent on the vo
abulary 
overage and availabilityof pre-existing resour
es.Thesauri, taxonomies and ontologies are well known tools for organizing the 
on-
eptual stru
tures of a �eld. Yet these resour
es require 
onsiderable human e�ortand resour
es as well as time. As su
h, they are hardly readily available for every�eld and are rapidly overtaken by the 
onstant appearan
e of new 
on
epts. Al-though a huge e�ort is being dedi
ated towards semi- or fully-automated ontologybuilding, the balk of the stru
turing still falls on the domain expert (Bi�ebow andSzulman, 1999). Ontology expansion by populating an existing ontology with novel
on
epts provides a partial solution to the domain vo
abulary 
overage and stru
-turing problem. Ontology populating tasks naturally utilize the existing 
on
eptualstru
ture. For the Uni�ed Medi
al Language System (UMLS) (Humphreys et al.,1998), where the majority of related terms are identi�ed manually, the thesaurussimply de�nes the set of possible relations. This pro
ess 
an be automated through
ompositional analysis of the MWTs by proje
ting relations between tokens ontorelations between MWTs (Navigli and Velardi, 2004). However, for this te
hniqueto be su

essful, the ontology must already 
ontain all of the tokens of a novelMWT. This is an unrealisti
 assumption in the 
ase of GENIA 
orpus used in thisstudy, where only 35.7% terminologi
al tokens are in WordNet and 28.9% are in theUMLS.In 
ontrast with exogeneous methods, endogeneous approa
hes rely on shallow,bottom-up parsing and have the advantage of 
omputational tra
tability. They arefurther subdivided into methods based on external or internal eviden
e.Methods based on external eviden
e (Hearst, 1992; Morin and Ja
quemin, 2003;Nenadi
 et al., 2004; Grabar and Zweigenbaum, 2004) sear
h for lexi
o-synta
ti

ues like \su
h as" or \also known as" surrounding term stru
tures whi
h signal hy-pernym/hyponyms and synonyms relations respe
tively. External eviden
e has beenapplied to terminology knowledge base 
onstru
tion (Condamines and Reyberolle,1998) and ontology building (Aussena
-Gilles and S�egu�ela, 2000). However this ap-proa
h is inherently limited by the fa
t that it 
an only 
apture relations realisedthrough the listed lexi
o-synta
ti
 patterns. For instan
e, (Morin and Ja
quemin,2003) report dis
overing 884 hypernyms relations in a 
orpus of almost 430 000words (Ja
quemin et al., 2002), with an average pre
ision of 79% and an averagere
all of 46% (average F-s
ore 58%).Internal eviden
e refers to the 
ase where eviden
e of the relation 
omes from withinthe term stru
ture itself. This is generally 
alled \variation" and 
overs operationsof expansion (addition), stru
tural transformation and substitution of lexi
al ele-2



ments in a given term. For instan
e, the relation between (\gene expression" !\human beta globin gene expression") is one of hypernym/hyponym due to the ad-dition of more spe
i�ers to the generi
 term. The morpho-synta
ti
 operations usedto relate MWTs have been explored for a variety of appli
ations su
h as buildinglexi
al resour
es from 
orpora (Daille, 2003; Ja
quemin, 2001; Grabar and Zweigen-baum, 2004), automati
 thesaurus enri
hment (Morin and Ja
quemin, 2003), do-main knowledge mapping and textmining (Ibekwe-SanJuan, 1998; Ibekwe-SanJuanand SanJuan, 2004).Although endogeneous methods o�er sets of related terms, the stru
ture proposedremains diÆ
ult to manage by human exploration. Indeed, it is very fastidious andquite ineÆ
ient to labor through thousands of terms in a database let alone tryto grasp the 
on
eptual organization of terms in the domain if no synthesis of theinformation is o�ered.A way in whi
h this synthesis 
an be approa
hed is through data analysis methodsand more spe
i�
ally through 
lustering. Let us emphasize that this kind of stru
-turing also di�ers from ontology building in whi
h every term is listed, albeit in ahierar
hy.The need to a
hieve a meaningful synthesis of domain 
on
epts is even more a
utefor appli
ations like s
ienti�
 and te
hnologi
al wat
h or textmining where expertsare required to grasp topi
 emergen
e, shifts and obsoles
en
e issues in limited time.Resear
h on methods to this end, known as domain knowledge mapping (DKM)rely on powerful and suggestive visualization tools for result exploration. While alot of resear
h has been 
arried out separately on the two �elds 
on
erned here:
omputational terminology (see Ja
quemin and Bourigault (2003) for a review)and DKM (see S
hi�rin and B�orner (2004) for a review), very few attempts havebeen made to bring the two together. Resear
h on DKM traditionally relies onstatisti
al models (
o-o

urren
e models) to build 
lusters of frequently 
o-o

urringitems (Mane and B�orner, 2004; Hearst, 1999; Small, 1999; Feldman et al., 1998).The 
hallenge raised by our approa
h lies in extending further the integration ofsymboli
 representations into a 
lustering algorithm for DKM. Earlier stages ofthis methodology have been published elsewhere (Ibekwe-SanJuan, 1998; Ibekwe-SanJuan and SanJuan, 2004). The fo
us of this paper is to evaluate the extentto whi
h the automati
 
lustering of term variants based on symboli
 relationsre
e
ts a hand-built knowledge stru
ture. For this, after mining symboli
 relationsbetween terms gathered from the GENIA 
orpus, we 
luster the terms based onthese relations. The 
lusters so produ
ed will be evaluated against a gold standard,the hand built GENIA ontology. The out
ome of su
h an evaluation will determineif the methodology has uses for other knowledge organization tasks su
h as ontologypopulation as it has up till now been solely applied to s
ien
e and te
hnology wat
h.We also dis
uss its potentialities in a Question Answering (Q-A) system fo
used onte
hni
al domains.The rest of the paper is organized as follows: se
tion 2 des
ribes the 
orpus usedin this experiment and gives an overview of the methodology; se
tion 3 des
ribesthe three-level stru
turing of the MWTs; se
tion 4 evaluates the similarity of theautomati
 stru
turing against the hand-built GENIA ontology; se
tion 5 is devotedto dis
ussions on the potentials of the term variant 
lustering for Q-A.3



2 Corpus and Methodology overviewThe GENIA proje
t (Kim et al., 2003) is an annotated 
orpus built to fa
ilitatetextmining in the �eld of genomi
s and thus promote bioinformati
s using NLPte
hniques. It is also aimed to be a \gold standard for the evaluation of textminingsystems" (Kim et al., 2003). This 
orpus deals with biologi
al rea
tions 
on
erningtrans
ription fa
tors in human blood 
ells. Utilizing the MEDLINE database andthe Medi
al Subje
t headings (MeSH) thesaurus, re
ords 
ontaining the keywords\human", \blood 
ell" and \trans
ription fa
tor" were used to extra
t the titlesand abstra
ts of 2 000 arti
les 1 
omprising more than 400 000 tokens. The 
orpuswas manually enri
hed in XML by two domain experts. This led to almost 100 000semanti
 annotations of whi
h 26 789 unique terms were expli
itly identi�ed. Ea
hbiologi
al term is assigned a semanti
 
ategory from a small humanly-
onstru
tedontology, referred to as the GENIA ontology (see Figure 3).We exploited the GENIA annotation to extra
t MWTs, so that the terms we work onare the same the GENIA ontology is built on. This will ensure a plausible 
omparisonbetween our MTWs stru
turing and the GENIA ontology itself.2.1 Normalizing the MWTs from the GENIA 
orpusBelow is an example of a senten
e from the GENIA 
orpus:<
ons lex="IL-2_gene_expression" sem="G#other_name"><
ons lex="IL-2_gene" sem="G#DNA_domain_or_region"><w 
="NN">IL-2</w><w 
="NN">gene</w></
ons><w 
="NN">expression</w></
ons><w 
="CC">and</w><
ons lex="NF-kappa_B_a
tivation" sem="G#other_name"><
ons lex="NF-kappa_B" sem="G#protein_mole
ule"><w 
="NN">NF-kappa</w> <w 
="NN">B</w></
ons><w 
="NN">a
tivation</w></
ons>Noti
e that the underlying XML markup of the terms (tag \
ons lex") fa
ilitatesthe identi�
ation of 
onstituent MWTs, so \IL-2 gene" is a term in its own rightwhi
h modi�es the head \expression" to produ
e the full term in this instan
e,\IL-2 gene expression". Similarly, the GENIA annotation s
heme disambiguatesellipsis in 
oordinated 
lauses by making expli
it the terms involved. However, theGENIA 
orpus was not devoid of problems from an NLP perspe
tive. There weremany morphologi
al variants amongst the terms whi
h, unless 
orre
ted, wouldlead to spurious analyses in later stages. It was ne
essary to handle these variationsin order to identify synonymous MWTs. We thus performed some normalizationson the terms whi
h 
onsisted in lower-
asing every word whenever it exists in the
orpus, harmonizing arbitrary pun
tuation use (for instan
e, \gamma C 
hain" &\gamma (
) 
hain"), harmonizing the irregular use of spe
ial 
hara
ters (hyphens,slash, parenthesis, et
) and retaining the singular form of ea
h word. For instan
e,\Ca(2+)-dependent pathway" be
omes \Ca(2+) dependent pathway". This is anad-ho
 pre-pro
essing whi
h will have to be adapted to ea
h 
orpus, espe
ially inte
hni
al domains where orthographi
 variations are frequent.1 Version 3.0x, http://www-tsujii.is.s.u-tokyo.a
.jp/�genia/topi
s/Corpus/4



2.2 Methodology overviewGiven that the terms were already annotated, the next step 
orresponding to the�rst level stru
turing 
onsists in establishing binary \term-term" relations using thevariation relations (see 3.1 for more details). Noisy relations are �ltered out usingWordNet (see 3.2). Basing on the remaining relations, 
onne
ted 
omponents areformed by grouping together terms that share some modi�er relations, i.e, termsthat have the same head and a subset of 
ommon modi�er words.Components thus obtained are sets of terms formed around a parti
ular domainparadigm or a mono-themati
 family (see examples below). This 
onstitutes these
ond-level of stru
turing. The 
omponents are grouped into 
lasses iteratively a
-
ording to the number of shared head variation links. This produ
es 
lusters ofrelated domain topi
s that are mapped onto a 2D spa
e using the AiSee 2 graphi
display pa
kage. This 
onstitutes the third level stru
turing. The whole methodol-ogy is embodied in the TermWat
h system (Ibekwe-SanJuan and SanJuan, 2004)and relies on a hierar
hi
al 
lustering algorithm spe
i�
ally adapted to the linguisti
nature of the relations. A detailed des
ription of the 
lustering algorithm is givenin Se
tion 3.3.1. Below is an example of a 
lass formed by four 
omponents. Termswithin a 
omponent share modi�er relations \CD11b+ bone marrow 
ell" is a mod-i�er substitution of \immature bone marrow 
ell". Components are linked by headvariation relations, i.e., \bone marrow transplantation" is a head expansion of \bonemarrow".� Comp1: CD11b+ bone marrow 
ell; immature bone marrow 
ell; mouse bonemarrow 
ell; normal bone marrow 
ell; normal bone marrow myeloid 
ell; normalCD34+ bone marrow 
ell; transgeni
 bonne marrow 
ell; murine bone marrow
ell; primary murine bone marrow 
ell.� Comp2: bone marrow transplantation; autologous bone marrow transplantation� Comp3: bone marrow; adult bone marrow; normal bone marrow� Comp4: bone marrow derived ma
rophage; murine bone marrow derived ma
rophageWhat this 
lass is suggesting is that resear
h 
arried around bone marrow dealswith the following topi
s (the added or substituted head words): transplantation,
ell, ma
rophage whereas the modi�er relations suggest the di�erent \types" of bonemarrow whi
h are being studied (CD11b+, immature, mouse, transgeni
, murine,autologous, normal, adult, et
.)3 Stru
turing MultiWord TermsWe des
ribe in detail the types of variations used to relate the MWTs (Se
tion3.1) and the �ltering pro
ess performed to remove some noisy variants (Se
tion3.2). These variations then serve as basis for the three-level stru
turing e�e
ted onMWTs in order to build 
lasses (Se
tion 3.3).2 www.aisee.
om
5



3.1 Lexi
al stru
turing of MWTsThe stru
turing 
apability of variation relations for a domain terminology has beenattested in several studies. Under 
ertain lexi
o-grammati
al 
onstraints 3 , synta
ti
variations yield 
on
eptual relations between terms. Nenadi
 et al. (2004); Grabarand Zweigenbaum (2004) measured the \lexi
al similarity" between terms, i.e., \thenumber of 
ommonly shared words between a pair of terms". In our study, we 
on-sidered two types of synta
ti
 variations: the addition (expansion) or substitutionof nominal elements within a MWT. The two operations take pla
e in the two syn-ta
ti
 stru
tures: 
ompound or syntagmati
 (with a PP atta
hment) and 
an beviewed along the grammati
al axis depending on whether they a�e
t the head ormodi�er words. These variations have been des
ribed in (Ibekwe-SanJuan, 1998),we will re
all them brie
y here.Expansions (or lexi
al in
lusion) are subdivided into three types a

ording to theposition of the added words: left-expansion (L-Exp) is the addition of new modi�erwords and right-expansion (R-Exp) the addition of a new head. The 
ombination ofthese two types results in left-right expansions (LR-Exp). The addition of modi�erwords within a term results in an Insertion (Ins). Expansions engender asymmetri
alrelations in that they relate MWTs of di�erent lengths, one being a subpart of theother. They are further 
onstrained be
ause we 
onsider the addition of adja
entnominal elements (nouns, adje
tives). This lessens the possibility of relating as vari-ants, terms whi
h portray arbitrary word order 
hanges.Substitutions are also subdivided into two types: modi�er substitution (M-Sub)and head substitution (H-Sub). They identify variants of the same length (symmet-ri
al links). This relation holds only between MWTs where one and only one wordis di�erent. An example of the rule identifying M-Sub is :(t2 is a M-Sub of t1)() ((t1 = M1mM2 h) and (t2 = M1m0M2 h) with m0 6= m)where t1; t2 are multiword terms, M1;M2 are strings of optional modi�er words,m;m0 are non-empty modi�er words and h is the head noun.Table (1) gives some examples of the synta
ti
 variants found for \blood 
ell". Thelast two 
olumns indi
ate the number of MWTs exhibiting ea
h relation and thenumber of links 
reated between the terms.Types Example: blood 
ell Terms LinksExpansions L-Exp mononu
lear blood 
ell 5352 10 153R-Exp blood 
ell re
eptor 6641 7337LR-Exp white blood 
ell 
ount 3698 3767Ins blood mononu
lear 
ell 4821 6133Substitutions M-Sub stromal 
ell 14 865 437 291H-Sub blood pressure 11 702 111 068Table 1. Types and proportion of synta
ti
 variations found in the GENIA 
orpus.86% (23 314) of the MWTs found in the Genia 
orpus are involved in one or moretypes of synta
ti
 variations. These represent general linguisti
 operations whi
h3 The morphologi
al 
ategory and the grammati
al role of inserted words.6
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Fig. 1. Fragment of the 
on
eptual hierar
hy indu
ed by morpho-synta
ti
 varia-tions.
an relate a high proportion of terms within the 
orpus, thus their 
overage is verysatisfa
tory.3.2 Analyzing and �ltering synta
ti
 relationsThe rationale in distinguishing modi�er and head variations is that they do not 
on-vey the same linguisti
 information. Modi�er variations a�e
t the quali�ers whereashead variations fundamentally 
hange the 
on
ept family. For this reason, left-expansion (L-Exp) naturally re
e
ts the fa
t that more spe
i�
 MWTs have moremodi�ers. However, the resulting 
on
eptual relations are not straightforward forinsertions (Ins) as 
hanging the head-modi�er relations of a MWT 
reates a stru
-tural (and therefore 
on
eptual) ambiguity. For example, \HIV 1 expression" IS Akind of \HIV expression" but this 
ertainty diminishes as the number of insertedmodi�ers in
reases, \HIV 2 gene expression" and \HIV LTR driven lu
iferase ex-pression". With this in mind, insertions that involve only a single additional modi�erand left-expansions 
an be used to 
reate IS A hierar
hies around 
on
ept families.This permits a MWT to have more than one parent (see \HIV gene expression" inFig. 1).These observations suggest that among the variations that do not 
hange the headword, left-expansions (L-Exp) should be given priority for building 
omponents (2ndlevel stru
turing) if we want to obtain homogeneous 
lusters vis-�a-vis the GENIAontology.Substitutions engender horizontal relations between terms. Therefore, the resulting
on
eptual relation is a more general RELATEDNESS. Modi�er substitutions (M-Sub)
an denote members of the same 
on
ept family with alternative quali�
ations, oth-erwise known as \
o-hyponyms" or \siblings" in an IS A hierar
hy. The 
on
eptualshift engendered by head substitutions (H-Sub), on the other hand, links di�erentIS A hierar
hies at the same level of spe
i�
ity.7



For example, in Figure 1, although \gene expression" and \gene trans
ription" arehead substitutions (thus normally implying a topi
al shift), there is still a 
on
eptuallink: the \expression" of a \gene" is the result of its \trans
ription". However, thesame variation also links \gene" as it modi�es the two word MWTs headed by\regulation", \kno
kout", \a
tivation" and \produ
t", to name only a few. As Table(1) shows, substitutions are by far the most frequent type of variations with thevast majority of the links. For this reason, they are further �ltered using WordNet'slexi
al taxonomy (Fellbaum, 1998) to obtain a 
ategory of semanti
ally-motivatedrelations, hen
eforth 
alled \WordNet substitutions".WordNet Substitutions (WN-Sub) are those pairs of variants found in the 
orpus,in whi
h the substituted words belong to the same synset. With the 
on
eptual
lasses formed by WordNet synsets, we allow the substitution of both the head andmodi�er words as in \hormone e�e
t" and \endo
rine event".WordNet WN-Sub1 WN-Sub2M-Sub strong trans
riptional repressor potent trans
riptional repressorH-Sub in
ammatory rea
tion in
ammatory responseHM-Sub hormone e�e
t endo
rine eventTable 2. Semanti
 substitutions identi�ed through WordNetUsing a general lexi
al resour
e like WordNet to relate the MWTs identi�es thosewords that are both related in a general vo
abulary. Evaluating the overlap in\general knowledge" and \spe
ialized knowledge" brings two observations. First,the 
overage of WordNet over the GENIA 
orpus is limited with the result thatWN-Subs are relatively rare. Se
ond, the a
tual 
on
eptual relation produ
ed byMWTs in a spe
ialized �eld 
an di�er from the generi
 one suggested by a generallanguage resour
e. For instan
e, within the genomi
 domain, \strong" refers to thedegree to whi
h a \repressor" binds to the DNA whereas \potent" refers to thedegree of its e�e
t. Similarly, an \in
ammatory response" 
auses an \in
amma-tory rea
tion" (the pro
ess of be
oming in
amed). These are 
learly more relatedthan the synta
ti
 substitutions but they are not synonyms in the genomi
s domainas WordNet synsets seem to suggest. However, the fa
t that WordNet relates themis good enough for the 
lustering task be
ause they will end up in the same 
om-ponent, and thus be strongly related in the resulting domain knowledge stru
ture.Despite the fa
t that general resour
es 
annot 
apture the expli
it 
on
eptual re-lation between spe
ialized domain terms, we still highly improved the pre
ision ofthe substitutions variants using WordNet, in the sense that 97% of the WN-Subslinked semanti
ally related terms. Only 304 links were present in WordNet amongthe 548 359 possible substitutions found in the 
orpus. Note however that this is nota measure of re
all/pre
ision sin
e WordNet is not a spe
ialized resour
e. A moreadequate re
all/pre
ision measure would be obtained in 
omparing the 
orpus sub-stitutions against the Mesh thesaurus. Let us re
all that the 
orpus was extra
tedfrom Medline whi
h relies on the Mesh thesaurus. In the present experiment, thislow number of WN-Subs does not seem to be a drawba
k in our approa
h. On the
ontrary, we will see later in se
tion 3.3.2 that we need to severely restri
t the setof substitutions in other to avoid the 
hain e�e
t, well known in some 
lusteringapproa
hes. 8



3.3 Mapping a Domain TerminologyThe aim is to produ
e knowledge maps of important 
lusters re
e
ting domaintopi
s and their asso
iations. We �rst des
ribe the 
lustering algorithm (Se
tion3.3.1) and its appli
ation to the GENIA MWTs (Se
tion 3.3.2).3.3.1 Term variant 
lusteringThe variation relations used as basis for the 
lustering are represented as a graph.We re
all brie
y the fun
tioning of the algorithm. Clustering is a two-stage pro
ess.First the algorithm builds 
onne
ted 
omponents using a subset of the variationrelations, usually the modi�er relations (L-Exp, Ins, M-Sub). We 
all these COMPrelations.The transitive 
losure of COMP relations (COMP*) partitions the whole set ofMWTs into 
omponents. These 
onne
ted 
omponents are sub-graphs of MWTvariants that share the same head word or a synonym attested by WordNet synsets.At the se
ond stage, the 
onne
ted 
omponents are 
lustered into 
lasses using thehead relations (R-Exp, LR-Exp, H-sub), this subset of relations is 
alled CLAS. Atthis stage, 
omponents whose terms are in one of the CLAS relations are groupedbasing on a similarity 
oeÆ
ient s 
omputed thus:s(i; j) = XR2CLAS NR(i; j)jRjwhere R is a variation relation in CLAS, jRj is the number of pairs of terms relatedby R and NR(i; j) is the number of these pairs between 
omponents i and j.3.3.2 Clustering the GENIA term variantsPreliminary 
lustering tests and the observations made in Se
tion 3.2 led us tomodify here the roles usually assigned to the synta
ti
 variations during 
luster-ing. Following observations in this se
tion, we further split L-Exp into two sub-relations: strong-L-Exp and weak-L-Exp depending on if there was a unique ormore appended modi�ers. We sele
ted WN-Sub and strong-L-Exp as COMP rela-tions whereas Ins, weak-L-Exp, R-Exp, LR-Exp served as CLAS variations. Con-sequently, terms sharing the same 
onne
ted 
omponent 
an have di�erent heads,semanti
ally related through WordNet synsets. Conversely, weak-expansions andinsertions were ex
luded from the COMP set of relations be
ause they led to toobig 
omponents (� 2 000 terms) on this 
orpus.Empiri
al tests showed the 
lasses produ
ed at the 2nd iteration of the algorithm tobe the most legible in terms of size and 
ontent. This produ
ed 1 664 
lasses, 6 151
omponents and a total of 10285 MWTs in the 
lasses. The output of the 
lusteringmodule is automati
ally formatted in the Graph Des
ription Language (GDL) usedby AiSee for visualization. To visualize the underlying stru
ture of the network of
lasses, the user 
an temporarily hide very weak links between them. This givesthe image in Fig. 2(a) that shows the stru
ture of the graph. Ea
h 
lass is labelledautomati
ally by the term that shares the highest number of variation links outsidethe 
luster. The global image obtained exhibits a star shape with a 
entral 
ore,related to a 
y
li
 subgraph. By order of importan
e, the 
entral position is o

upied9



a) Central Network of GENIA 
lasses b) Classes related to \blood 
ell"Fig. 2. Graphs of term variant 
lasses displayed with AiSeeby a big 
lass labeled \T-Cell" with 374 terms. A se
ond smaller sub network isformed around the 
lass labelled \gene expression" with 235 terms.Ea
h 
lass 
an be unfolded to show its internal stru
ture: the 
onne
ted 
omponentsand then its most a
tive variants. The user 
an thus immediately per
eive the mostsalient features of a 
lass. Fig. 2 (b) is a zoom on the 
lasses surrounding \blood 
ell".This shows its internal links (\white blood 
ell 
ount") but also its external links.A sub-network emerges from the stru
ture of the three 
lasses \T lympho
yte", \Blympho
yte", \T lympho
yte a
tivation me
hanism". These form a linear graph, i.e.,
hains of relatively long verti
es starting from a 
entral 
lass to the border of thegraph whi
h have rarely more than one outgoing link. The visualization interfa
enaturally aligns the elements of these linear graphs, thus highlighting them. Thelength of an ar
 has a straightforward meaning here. Strong variation links aresymbolised by shorter ar
s while weak links are symbolised by longer ar
s. Thiskind of intera
tive manipulations using the AiSee interfa
e allows the user to a

esssimultaneously the three levels of the 
lustering results: 
lasses, 
omponents andterms.The two 
lasses \T lympho
yte" and \B lympho
yte" 
ontain respe
tively termslike \a
tivated T lympho
yte", \human peripheral lympho
yte", \a
tivated periph-eral blood lympho
yte" for the former and \B lympho
yte spe
i�
 mb 1 gene", \nor-mal B lympho
yte", \B lympho
yte growth transformation" for the latter. Theirlink with the 
lasses dealing with the \blood 
ell" and \white blood 
ell" or \leu-
o
ytes" is 
oherent be
ause a \lympho
yte is a form of leu
o
yte o

urring in theblood", \in the lymph" and a \lymph is a 
olourless 
uid 
ontaining white blood10




ells" 4 . TermWat
h thus seems to have e�e
ted 
oherent themati
 asso
iations inthe domain via synta
ti
 variations and the few WN-Subs found in the 
orpus. Wewill now examine to what extent these 
lasses also re
e
t the hand-built GENIAontology.4 Evaluation of the 
lasses against the GENIA ontologyA 
lustering pro
ess is supposed to group together similar obje
ts basing on some
riteria. For domain knowledge mapping (DKM) and text mining systems, the 
ri-teria are usually statisti
al (
o-o

urren
e of text units). Here we relied on symboli

riteria: the number and type of variation relations between terms whi
h result initeratively grouping sets of related MWTs. Although, we produ
ed a sort of hierar-
hy (the in
lusion of one 
lass into another), it is a formal hierar
hy stemming froma 
lustering algorithm, fundamentally di�erent from the semanti
 hierar
hy in anontology. Mapped onto a 2D spa
e, results from a 
lustering algorithm are meantto highlight spatial stru
tures whose interpretation holds a strategi
 dimension, 5for s
ien
e and te
hnology wat
h. This is quite di�erent from the interpretationsmade on the hierar
hy resulting from an ontology or any other semanti
 organiza-tion of domain 
on
epts. However, any ontology indu
es an idea of similarity. The
omparison of the two stru
tures is based on the following assumptions:Assumption 1: two terms from the GENIA ontology 
an be 
onsidered 
lose if theywere assigned the same semanti
 
ategory, or if the level of the 
ommon subsuming
on
ept is not too far from the nodes 
onsidered,Assumption 2: TermWat
h's 
lasses supposes a \semanti
 proximity" betweenterms in the same 
omponent and \a weaker semanti
 proximity" between terms inthe same 
lass,Assumption 3: for the evaluation task, we hypothesize that the distan
e betweenthe two stru
turings may not be as big as the underlying organizing prin
iples inboth stru
tures may suggest.To test these assumptions, we try to answer the following question: i f two termsare 
lose in the GENIA ontology (a

ording to \assumption 1"), do they tend toappear in the same 
lass in TermWat
h's output ?For that purpose, let us 
all atomi
 
ategory the 
ategories at the leaves of the GE-NIA ontology. Then we map the set of TermWat
h 
lasses onto the GENIA ontologyby asso
iating ea
h 
omponent and 
lass with their dominant atomi
 
ategory, i.e.the atomi
 
ategory that has the highest number of terms in the 
lass.By way of example, the 
omponent labelled \NF kappaB" has �ve terms. Four ofthem: \NF kappaB", \lung NF kappaB", \mammalian NF kappaB", \nu
lear NFkappaB" are assigned the \protein 
omplex" 
ategory, and only the �fth one: \
y-toplasmi
 NF kappaB" 
omes from a di�erent 
ategory: \protein mole
ule". Thus\protein 
omplex" 
ategory will be asso
iated with this 
omponent whi
h 
learly4 Con
ise Oxford Di
tionary, Allen R.E. (eds.). 8th Edition, pp.708-7095 The notions of \
entral" vs \border" topi
s, topi
 \growth" vs \obsoles
en
e" are
ru
ial here.
11



has a high degree of homogeneity (80%) vis-�a-vis the GENIA ontology. This 
om-ponent is an element of a 
lass that has the same label \NF kappaB" but not thesame dominant GENIA group whi
h is \protein mole
ule".Table 3 shows the 
ategories (ex
luding \other name") asso
iated with the nine
lasses that have more than 50 terms. \other name" was designed as a mis
ellaneous
ategory to re
eive all the terms that 
ould not be assigned a more spe
i�
 semanti
type by the GENIA ontology builders.The labels of the 
lasses are given in the fourth 
olumn. The asso
iated 
ategory(the dominant one) is given in the last 
olumn. The �rst 
olumn \NbG" shows thenumber of terms in the 
lass that share the dominant 
ategory, the se
ond 
olumn\NbC" shows the total number of terms in the 
lass and the following 
alled \rate"gives the ratio between the previous two numbers.NbG NbC rate 
lass label asso
iated GENIA 
ategory32 86 0.37 NF kappaB protein mole
ule30 72 0.42 mouse gene DNA domain or region43 99 0.43 DNA binding protein family or group31 60 0.52 response element DNA domain or region218 374 0.58 T-
ell 
ell line47 73 0.64 E-Box DNA domain or region41 64 0.64 human enhan
er DNA domain or region78 112 0.70 binding site DNA domain or region45 63 0.71 N-terminal domain protein domain or regionTable 3. GENIA 
ategories asso
iated with the biggest 
lassesHen
e, table 3 shows that the biggest 
lasses produ
ed by TermWat
h have morethan 40% of their terms in the same GENIA 
ategory, ex
ept for 
lass \NF kap-paB". These 
ategories are also the most frequent in the GENIA 
orpus. However,we show in the sequel that other 
ategories also appear in the 
lustering output,notwithstanding their low frequen
y. A low s
ore does not however signify that a
lass is an error with regard to the GENIA ontology. Analyzing 
lass \NF kappaB"whose dominant GENIA 
ategory (\protein mole
ule") represents only 37% of itsterms, we �nd out that all the GENIA 
ategories of terms in this 
lass are sub-sumed under the same 
ommon father 
on
ept in the ontology, namely \protein".We present now some statisti
s to verify if these lo
al observations apply to themajority of the 
omponents and 
lasses.Before 
omputing these statisti
s, we have to 
onsider separately the mis
ellaneous
ategory \other name" whi
h subsumes 21% of the GENIA ontology terms. A �rstobservation is that our 
omparison showed the homogeneity of TermWat
h's 
om-ponents and 
lasses asso
iated with \other name" to be very high. The averageproportion of terms belonging to this 
ategory is 98% for 
omponents and 85% for
lasses. This shows that the syntati
 relations used in 
lustering were able to isolateterms in this mis
ellaneous 
ategory from the rest.In the following, the rest 
omparison is performed on the remaining 
omponentsand 
lasses asso
iated with the rest of the GENIA 
ategories. These involve 1 063
omponents, 659 
lasses and a total of 5 674 terms.12



We start by 
omputing the number of 
omponents and 
lasses asso
iated to ea
hatomi
 
ategory of the GENIA ontology. For that purpose we 
onsider:� the distribution dG of the most frequent GENIA 
ategories in the original 
orpusover the total number of term o

urren
es in the GENIA 
orpus.� the distributions d
omp and d
lass of dominant 
ategories in 
omponents and
lasses respe
tively.Thus, for a given 
ategory 
 like \protein mole
ule" whi
h is the most frequent
ategory in the GENIA ontology,dG(
) is the number of term o

urren
es in the GENIA 
orpus having the 
ategory\
"= \protein mole
ule" whi
h is 15348 in this 
ase, divided by the total numberof o

urren
es (95 138).d
omp(
) is the number of 
omponents in TermWat
h output, of whi
h the majorityof the terms are in 
ategory 
 (122 in this 
ase), divided by the total number of
omponents (1 063).d
lass(
) is the same as d
omp(
) ex
ept that we 
onsider the 659 
lasses instead of
omponents. 73 
lasses are asso
iated with \protein mole
ule".The right topmost graphi
 in Figure 3 (\Distribution of 
ategories in GENIA 
orpus,TermWat
h 
omponents and 
lasses") allows us to 
ompare the 12 topmost valuesof dG (represented by the upper bla
k bars) with the 
orresponding values of d
ompand d
lass respe
tively represented by the middle grey bars and the lowest whitebars respe
tively.This �gure shows that 
lasses, more than 
omponents, lessens the deviation fromthe distribution of GENIA 
ategories in the 
orpus (ex
ept for the small 
ategory\lipid"). In fa
t, d
omp(
) is mu
h lower than dG(
) whenever 
ategory 
 
ontainsterms like \T-
ell" that generate huge 
omponents whi
h only a

ount for one o
-
urren
e of the 
ategory.Now we use the 
on
epts of pre
ision and re
all to analyze the quality of thesemappings. Sin
e we are not evaluating here a Q-A performan
e but the ability of a
lustering algorithm to dis
ern terms from di�erent semanti
 
ategories, we de�nedre
all and pre
ision slightly di�erently from the way in whi
h they are used inInformation Retrieval.We identify ea
h GENIA 
ategory G with the set of asso
iated terms. Let G bea family of GENIA 
ategories and let X be one of the families of 
omponents or
lasses. Using these notations, we 
learly have for any X 2 X the equality:jGX \Xj = maxfjG \Xj : G 2 GgPre
ision p 
an be de�ned for any 
luster (
omponent or 
lass) X as the proportionof terms in X that are in GX : p(X) = jGX \XjjXj13



GENIA ontologyFig. 3. Mapping GENIA 
ategories onto TermWat
h 
lasses.Hen
e, knowing that a term t is in a 
luster X, the value v = p(X) is the 
onditionalprobability GX jX of �nding e�e
tively t in the 
ategory GX .The re
all r is de�ned for any pre
ision value v = p(X) as the proportion of 
lusterswhose pre
ision is higher than v:r(v) = jfX 2 X : p(X) � vgjjX jPre
ision/re
all fun
tions asso
iate with ea
h value v 2 [0; 1℄ the 
orresponding re-
all value. They are de
reasing one-to-one fun
tions. In fa
t, the pre
ision/re
allfun
tions de�ned here roughly 
orrespond to those indu
ed by the theoreti
al IRsystem where do
uments are assumed to be the terms in the 
lusters, and the setof 
ategories is viewed as a set of queries. Then for ea
h 
ategory, the system wouldretrieve the list of terms in 
lusters where this 
ategory is dominant. The analogywould be perfe
t if all the 
lusters had the same size. Let us now apply these 
on
eptsto the 
lusters. The right bottom graphi
 in Figure 3 shows three pre
ision/re
allfun
tions 
omputed on 
omponents and 
lasses using di�erent families G of 
ate-gories. The uppermost bold line 
urve shows the fun
tion obtained by setting X to14



the whole set of 
omponents, and G to the whole set of GENIA atomi
 
ategories.It shows that the synta
ti
 variations used to 
luster terms into 
omponents linkessentially terms in the same GENIA 
ategory. For instan
e, all the 
omponentsX 2 X have at least 48% of their terms in the dominant GENIA 
ategory GXasso
iated with X, while 68% of the 
omponents attain a 100% in
lusion in GX ,thus in one semanti
 type. This is not entirely surprising as 
omponents are formedby variations a�e
ting the modi�er elements in a term, thus 
omponents have thesame head word or a synonym attested by WordNet synsets.Classes on the other hand group several 
omponents, thus variants with di�erentheads. The lowest dashed 
urve shows the pre
ision/re
all fun
tion by setting Xto the 
lusters and G to the whole set of GENIA atomi
 
ategories. Naturally, thesemanti
 in
lusion in one 
ategory is mu
h lower than for the 
omponents. Still a
omparable proportion of 
lusters (95%), rea
h a pre
ision of 41% and 40% of themhave a 100% semanti
 in
lusion in the 
ategory GX to whi
h they are asso
iated.We then 
onsidered the upper 
ategories in the GENIA taxonomy by merging to-gether terms belonging to the same 
ommon parent 
ategory, thus by 
hanging theprevious G family of 
onsidered 
ategories. For instan
e, we merged on the one hand,terms on the super 
ategories \DNA" and \RNA", and on the other hand, termsfrom 
ategories 
ontaining \
ell" (\
ell type", \
ell 
omponents", \
ell line") intotheir super 
ategory: \sour
e". We then mapped these upper-level 
ategories ontothe 
lasses. We observed that the semanti
 in
lusion of the 
lasses in
reased andmoved 
loser to the distribution of the ontology 
ategories in the 
omponents. Thisis represented by the middle dotted 
urve on the Figure 3.These �ndings suggest:� that forming 
lusters by synta
ti
 variations is a sound linguisti
 approa
h whi
hlinks together 
on
eptually related terms,� that naturally, 
omponents tend to be monolithi
 in terms of semanti
 
lass, i.e,they link together one family of 
on
epts sharing di�erent attributes,� that TermWat
h's 
lasses, while not being monolithi
 in terms of semanti
 
lassstill group together 
oherent domain topi
s whi
h are logi
ally asso
iated,� that as we move up a taxonomy to 
onsider more generi
 GENIA 
ategories, thesemanti
 monolithy of the 
lasses tends to in
rease.5 Dis
ussionStru
turing multiword terms using symboli
 
riteria is a promising resear
h 
on
ernas it enables us to dis
over automati
ally meaningful asso
iations between domain
on
epts whi
h are useful for several tasks. We are 
urrently seeking ways to inte-grate this multi-level stru
turing in a Question Answering (Q-A) appli
ation. Webrie
y des
ribe the Q-A system and dis
uss ways of integrating the two approa
hesas well as other points of improvement.ExtrAns is a Question Answering system aimed at restri
ted domains, in parti
u-lar terminology-ri
h domains (Rinaldi et al., 2004b). While open domain Question15



Answering systems are targeted at large text 
olle
tions and use relatively littlelinguisti
 information, ExtrAns answers questions over su
h domains by exploitinglinguisti
 knowledge from the do
uments and terminologi
al knowledge about a spe-
i�
 domain. Various appli
ations of the ExtrAns system have been developed, fromthe original prototype aimed at the Unix do
umentation �les to a version targetingthe Air
raft Maintenan
e Manuals (AMM) of the Airbus A320 (Moll�a et al., 2003).Re
ently the system has been applied to do
ument 
olle
tions based on s
ienti�
literature in the \Life S
ien
es" area (Rinaldi et al., 2004a). ExtrAns's approa
h toQuestion Answering is parti
ularly 
omputationally intensive: this allows a deeperlinguisti
 analysis to be performed, at the 
ost of higher pro
essing time. The do
u-ments are analyzed in an o�-line stage and transformed in a semanti
 representation,based on logi
al forms whi
h is stored in a Knowledge Base (KB). Do
uments (andqueries) are subje
ted to the same pro
essing stages: �rst they are tokenized, thenthey go through a terminology-pro
essing module. If a term belonging to a synsetin the terminologi
al knowledge base is dete
ted, then the term is repla
ed by asynset identi�er in the logi
al form. This results in a 
anoni
al form, where thesynset identi�er denotes the 
on
ept that ea
h of the terms in the synset names.In this way any term 
ontained in a user query is automati
ally mapped to all itsvariants. This approa
h amounts to an impli
it \terminologi
al normalization" forthe domain, where the synset identi�er 
an be taken as a referen
e to the \
on
ept"that ea
h of the terms in the synset des
ribes.Unlike senten
es in do
uments, user queries are pro
essed on-line and the resultingsemanti
 representations are proved by dedu
tion over the 
ontents of the KB. Whenno dire
t answer for a user query 
an be found, the system is able to relax the proof
riteria in a stepwise manner. First, hyponyms are added to the query terms. Thismakes the query more general but maintains its logi
al 
orre
tness. If no answers
an be found or the user determines that they are not good answers, the system willattempt approximate mat
hing, in whi
h the senten
e that has the highest overlapof predi
ates with the query is retrieved. The mat
hing senten
es are s
ored andthe best mat
hes are returned.The multi-level terminology stru
turing s
heme presented here 
an be e�e
tivelyexploited in lo
ating answers. The answer strategy that we are 
onsidering 
an besummarized as: 6(1) First, extra
t potential answers that involve stri
tly synonymous MWTs.(2) Se
ond, look for potential answers with WordNet related MWTs.(3) Third, try hypernyms/hyponyms a
quired through lexi
o-synta
ti
 patterns.(4) Finally, allow the user to browse the 
lusters of MWTs to 
omprehend the
on
eptual organization of the resear
h topi
s and identify whi
h terms are ofinterest to his query.This set then be
omes the basis of a se
ond round of answering spe
i�
 questions.In this way the system 
an provide useful a

ess to users by fa
ilitating navigation6 While steps (1-3) are a
tually implemented, step (4) is 
urrently under experi-mentation. 16



through a domain of unfamiliar MWTs. For example, when looking for generalinformation on \blood 
ell" a user may well be interested in its \
ount", the se
onddi�erent head word in this 
lass (see Figure 2). By presenting the graph of 
lasses,the user 
an also browse related topi
s (T lympho
yte, Peripheral blood, Peripheralblood mononu
lear leu
o
yte, 
ord blood, T lympho
yte, B lympho
yte) and thusgrasp the di�erent topi
s addressed in the 
orpus in 
onne
tion with \blood 
ell"before de
iding on more pre
ise terms for the query. The 
lasses 
an thus assist thequery re�nement pro
ess. However, experiments involving real users are still to be
arried out in order to test these hypotheses.Other areas of improvement on the 
urrent work are the a
quisition of semanti
allyrelated terms through the use of lexi
o-synta
ti
 patterns found in the 
orpus. Wehave seen that some of the synta
ti
 variations needed to be �ltered through se-manti
 
onstraints, and that using an external resour
e is often limited in termsof 
orpus vo
abulary 
overage. This resulted in a drasti
 drop in the number ofsemanti
ally related terms re
overed. To over
ome this handi
ap, we identi�ed se-manti
ally related terms using the lexi
o-synta
ti
 
ues basing on works done byHearst (1992) and Morin & Ja
quemin (2003) for hypernym/hyponym relations.In this 
ase, the eviden
e for a semanti
 relation between MWTs 
omes from the
orpus itself. The underlying hypothesis is that semanti
 relations 
an be expressedvia a variety of surfa
e lexi
al and synta
ti
 patterns. These relations will aug-ment the ones already used for 
lustering and will 
onstitute a higher order level ofstru
turing whi
h sele
ts semanti
ally related terms from amongst the other lexi
alasso
iations. They are yet to be integrated into the 
lustering algorithm. This willinvolve a re-ordering of the whole set of relations a

ording to a s
ale of \semanti
proximity" they engender between two terms. Following the out
ome, ea
h relationtype will be assigned a role (COMP or CLAS) during the 
lassi�
ation.Lastly, there is need to 
ompare the output of the 
lustering algorithm used inTermWat
h with other existing algorithms based on statisti
al 
riterion (
o-o

ur-ren
e). To this end, we tried 
lustering the list of GENIA terms using a standard
lustering method 7 . It takes as input the number of 
o-o

urren
e of terms in GE-NIA 
orpus. We also 
omputed the resulting pre
ision/re
all fun
tions as in Figure3, but none of them rea
hed 35% of re
all for 50% of pre
ision. This poor perfor-man
e is due to very low 
o-o

urren
e values (more than 33% of terms have lessthan two o

urren
es in the abstra
ts). To in
rease these values, it is ne
essary totake into a

ount the variation phenomena. This 
an be done only by taking intoa

ount symboli
 relations between the 
lustered units. Further and more profoundexperiments need to be 
arried out to 
ompare TermWat
h's output to other sta-tisti
al 
lustering methods. Meanwhile, from this experiment, it appears that the
o-o

urren
e paradigm is not suited to un
overing, from the 
orpus, the semanti
links annotated in the GENIA ontology.7 FASTCLUST (k-means) and CLUSTER (
omplete linkage) pro
edures in SASsystem for Windows V8 (SAS Institute In
., Cary, NC, USA).
17
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