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Abstract

This paper presents an algebraic formalism for reasoning on finite increasing se-
quences over Boolean algebras in general and on generalizations of Rough Set con-
cepts in particular. We argue that these generalizations are suitable for modeling
relevance of documents in an Information Retrieval system.
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1 Introduction

In the 40’s, Moisil found a construction of centered 3-valued  Lukasiewicz alge-
bras. In this construction, Moisil considered the set of all pairs (b1, b2) over a
Boolean algebra with b1 ≤ b2 as the universe of a Heyting algebra with some
additional unary operators. A strong generalization of this idea was investi-
gated by Nadiu in (22), meanwhile similar constructions have been developed
for generalizations of Post Algebras by Cat Ho and Rasiowa in (10) and by
Serfati in (30) or for other algebras related to  Lukasiewicz’s ones by Iturrioz
in (15).

It has been pointed out by Iturrioz in (14) how Moisil’s construction could con-
tribute to the understanding of the logic for Rough Sets introduced by Düntsch
in (8) and the corresponding algebraic structure studied in (25). Rough Set
theory has been developed since 1991 (26) beyond its primary goals of reason-
ing with different types of information incompleteness (24) and offers today a
general framework for Data Mining (34) and Information Retrieval (12). Fol-
lowing Pawlak’s idea, a Rough Set is a pair of approximations of a set whose
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internal objects cannot be clearly discerned from external ones, due to lack of
information. They are based on the concept of approximation space which is
a frame (Ob, IND) such that Ob is a set of objects and IND an equivalence
relation on Ob, called the indiscernibility relation. IND generates a monadic
operator U and its dual L on the Boolean algebra (℘(Ob),∩,∪,−, ∅, Ob). The
rough sets considered by Pawlak are the pairs (L(X), U(X)) for any X⊆Ob.
It has been shown in (8; 14) that the collection of all rough sets of an approx-
imation space is a 3-valued  Lukasiewicz algebra.

This paper presents an algebraic formalism introduced in (28) for reasoning
on finite increasing sequences over Boolean algebras in general and on gener-
alizations of Rough Set concept in particular. We associate with every finite
poset T a class of algebras called T -Rough algebras. The axiomatization of
these algebras is simple and quite analogous to that of the L′

T propositional
calculus introduced by A. Nour in (23).

Our work is closely related to plain semi Post algebras introduced in (10).
Indeed, the fundamental examples of these algebras are constructed with par-
tially ordered descending sequences over a Boolean algebra. Thus, plain semi
Post algebras are Heyting algebras with unary operators and constants. Ex-
tensions of these algebraic systems, called Perception Logics, have been intro-
duced by Rasiowa in (33) for modeling cooperating systems fully communicat-
ing. Perception logics can also be interpreted in knowledge based distributed
systems.

Following Post’s tradition, simple plain semi Post algebras are primal (ev-
ery n-argument operation is definable). It follows from this strong property
that, within this algebraic framework, we can only consider full collections
of partially ordered sequences, whereas the collection of rough sets of an ap-
proximation space is not in general the full collection of increasing pairs. We
therefore choose to follow the direction given by  Lukasiewicz - Moisil algebras
to consider many-valued facts.

To illustrate the usefulness of this algebraic formalism we introduce an inno-
vating Information Retrieval (IR) model called k-Rough IR model where doc-
uments and queries are merged into a T -Rough algebra and a query expansion
process is implemented using algebraic operators. In fact, the study of the IR
system presented in this paper does not require T -Rough algebras where T is
not a chain. Meanwhile, we argue that these generalizations are suitable for
further developments of our k-Rough IR system and other applications. They
also give a better understanding of the large variety of algebraic frameworks
that were introduced from the 40’s to the 90’s dealing with Heyting Algebras
and MVL (17).

The rest of the paper is divided into two parts.
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The first part of the paper presents an overview of Heyting Algebras with
Boolean Operators (HABO) related to approximation reasoning and MVL.
By Boolean operator we mean a unary function that maps the whole algebra
onto a Boolean sub-algebra. A general and unified algebraic framework, called
T -Rough algebras, is introduced in §2. In §3, homomorphisms and quotient al-
gebras of T -Rough algebras are described. These results are applied in Section
4 to finite algebras. In Section 5, we show the connection between T -Rough
algebras and the propositional calculus introduced and investigated in (23).

The second part deals with motivating applications of HABO. In §6 we in-
troduce a generalization of Rough Set concept that allows the specification
of k + 1 degrees of approximation, k being a finite integer, and we show that
these generalizations are Heyting algebras with operators. In §7 we show that
this algebraic framework provides the intuition for defining several measures
of implicative intensity. These measures are illustrated in §8

Finally, in section 9, we conclude and mention directions for future works.

2 Algebraic framework

We associate with every finite poset T a class of algebras called T -Rough
algebras that shall allow us to give a unified view of a large family of many-
valued systems with a finite range of truth values, dealing with approximating
reasoning.

2.1 T -Rough algebras

Following (10, def. 1) and (14, def. 3.1), we associate a class of algebras with
every poset T such that |T | ≥ 2, by the following definition. In this definition,
the additional unary operators πi are analogous to projection mappings of a
product of Boolean algebras.

Definition 1 Given a finite poset T = (T,≤), an abstract algebra H =
(H,∧,∨,→, (πt)t∈T , 0, 1) where ∧,∨,→ are binary operations, πt for t ∈ T are
unary operations, and 0, 1 are zero-argument operations, is said to be a T -
Rough algebra provided the following conditions are satisfied:

(p0) (H,∧,∨,→, 0, 1) is a Heyting algebra;
(p1) πt(x ∨ y) = πt(x) ∨ πt(y);
(p2) πt(x ∧ y) = πt(x) ∧ πt(y);
(p3) πtπu(x) = πu(x);
(p4) πt(0) = 0;
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(p5) πt(x) ∨ ¬πt(x) = 1 where ¬x = x→ 0;
(p6) πt(x→y) =

∧
v≥t (πv(x)→πv(y));

(p7)
∧

v∈T πv(x) ∨ x = x.

for any x, y ∈ H, t, u, v ∈ T .

If T is the chain: 1 ≤ ... ≤ k ≤ k + 1, then H is said to be a k-Rough
algebra.

On the right-hand side of (p6) and on the left-hand side of (p7),
∧

denotes
the greatest lower bound. Since T is finite, these bounds are reduced to finite
conjunctions.

It follows from the above definition and from the fact that the class of all
Heyting algebras is equationally definable (21), that given a poset T , the class
of T -Rough algebras is also equationally definable. We shall denote by BT this
equational class. Like in (10; 14), the fact that the index set T of unary
operations is ordered is not explicitly described by conditions (p0)–(p7).

The following definition recalls a fundamental example of Heyting Algebra
with Boolean Operators (HABO) for algebraic models of MVL (18; 10; 15).

Definition 2 Let B be a Boolean algebra, let T = (T,≤) be a finite poset
such that T = {1, ..., n} is a finite set and ≤ is a partial order on T . We
denote by BT the lattice of isotone applications from T into B: f ∈ BT iff for
any u, v ∈ T , f(u) ≤ f(v) whenever u ≤ v. In the sequel we shall denote by ft

the image f(t) of t and we shall identify the application f with the sequence
(ft)t∈T .

It is well known (22; 10; 15; 30) that (BT ,∧,∨,→, 0, 1) is a Heyting algebra
where the implication→ is defined for any f, g ∈ BT by:

(f→g)t =
∧

u≥t

(¬fu ∨ gu)

Moreover, this Heyting algebra is linear (28) iff for any u, v, t ∈ T , u ≥ t and
v ≥ t imply u ≤ v or v ≤ u.

Definition 3 For any t ∈ T we define a unary operator πt on BT by setting:
(πt(f))u = ft. We denote by BT the Heyting algebra with operators:

BT = (BT ,∧,∨,→, (πt)t∈T , 0, 1)

It is straigthforward to check that any algebra BT is in BT.
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2.2 Representation theorem

Let T be a poset and H = (H,∧,∨,→, (πt)t∈T , 0, 1) a T -Rough algebra. We
remind the reader that if H = (H,∧,∨,→, 0, 1) is a Heyting algebra then the
algebra B(H) = (B(H),∧,∨,¬, 0, 1), B(H) being the set of complemented
elements, is a Boolean algebra. Moreover, the algebra (B(H),∧,∨,→, 0, 1)
where→ is defined by x→y = ¬x ∨ y is a Heyting subalgebra of H.

Let π(H) = {x ∈ H : (∀t ∈ T ) πt(x) = x} be the set of fixed points of
operations πt.

Let A be an algebra and let A be its universe (underlying set). A subuniverse S
of A (3, Ch. II, def. 2.2) is a subset of A which is closed under the fundamental
operations of A. If S 6= ∅, then S is the universe of a subalgebra of A.

Lemma 4 π(H) is a subuniverse of B(H).

PROOF. It follows from (p0) and (p5) that for any x ∈ H and t ∈ T , πt(x)
is a complemented element. Hence we have: π(H)⊆B(H).

It follows from (p4) that 0 ∈ π(H). (p0) yields x→x = 1, thus it follows from
(p6) that for any t ∈ T , πt(1) = 1 and consequently 1 ∈ π(H). Moreover,
axioms (p1) and (p2) imply that π(H) is closed with respect to operations ∧
and ∨. Finally, to show that if x ∈ π(H) then ¬x ∈ π(H), it is sufficient to
prove the following equation:

πu(¬πt(x)) = ¬πt(x) (1)

It follows from (p6) and (p4) that: πv(¬y) =
∧

w≥v ¬πw(y). Applying this
equality we obtain:

πu(¬πt(x)) =
∧

w≥u

¬πw(πt(x)) =
∧

w≥u

¬πt(x) = ¬πt(x)

2

We shall denote by π(H) the Boolean algebra defined on π(H). It follows from
previous Lemma 4 and (p1) that operators πt are isotone mappings from H
into the Boolean algebra π(H).

It is worth mentioning that previous lemma also yields π(H) and B(H) are
subuniverses of H.
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The following lemma, which is a consequence of axioms (p6) and (p7) shows
that for any t ∈ T , πt(x) can be treated as coordinates of x in H.

Lemma 5 (Determination principle) If πt(x) = πt(y) for any t ∈ T , then
x = y.

PROOF. The proof is analogous to that of determination principle in (15).
Assume that πt(x) = πt(y) for all t ∈ T . It follows from axiom (p6) that
πt(x→ y) =

∧
w≥t(πw(x)→πw(y)) = 1. Thus

∧
t∈T πt(x→ y) = 1 and by (p7)

we obtain x→y = 1. This implies in a Heyting algebra that x ≤ y. The proof
of the other half is alike. 2

Now we will show that for any x ∈ H , then the map ϕx : t ∈ T 7→ πt(x) is an
isotone application.

Lemma 6 For any u, v ∈ T , if u ≤ v then πu(x) ≤ πv(x).

PROOF. Similar to (S12) in (15). Since H is a Heyting algebra, by (p6) and
Lemma 4 we obtain:

πu(x) = πu(1→x) =
∧

w≥u

(πw(1)→πw(x)) =
∧

w≥u

πw(x) ≤ πv(x)

2

The next statement gives an embedding of any T -Rough algebra into π(H)T,
the lattice of isotone applications from T into the boolean algebra π(H).

Theorem 7 H is isomorphic to a subalgebra of (π(H))
T

.

PROOF. Let us consider the mapping h from H into (π(H))T defined by :
h(x) = ϕx. It follows from Lemma 5 that h is one-to-one. Axioms (p1),(p2)
and Lemma 4 yield that h is a homomorphism with respect to bounded lattice
operations. From axiom (p6) we deduce that h is a Heyting homomorphism.
Finally it follows from axiom (p3) that for any u ∈ T , ϕπt(x)(u) = πu(πt(x)) =
πt(x) and consequently that h(πt(x)) = πt(h(x)). Hence, h is a monomorphism
of H into (π(H))

T
. 2
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2.3 Generator of the equational class

We shall denote by 2 = (2,∧,∨,¬, 0, 1) the simple Boolean algebra, i.e.
2 = {0, 1}. The algebra 2T defined in Example 2 is isomorphic to the algebra:
(F(T ),∩,∪, imp, g1, ..., gk+1, ∅, T ) where F(T ) is the set of filters F of T (i.e.
v ∈ F whenever u ∈ F and v ≥ u), imp is the binary operation defined by:
imp(F, G) =

⋃
{H ∈ F(T ) : F ∩ H ⊆G} and for any t ∈ T , gt is the unary

operator defined by: gt(F ) = T if t ∈ F , gt(F ) = ∅ otherwise. If T is a chain,
then imp(F, G) = T if F ⊆G and imp(F, G) = G otherwise. Observe that any
subset S of 2T closed with respect to ∧,∨,→, 0 and 1 is a sub-universe of 2T.
We are going to show that 2T is a generator of the equational class BT.

For any Boolean algebra B, we denote by U(B) the set of its ultrafilters. We
associate with every H ∈ BT the algebra Ĥ defined by:

Ĥ =
(
2U(π(H))

)

T
if U(π(H)) 6= ∅ and Ĥ = 2T otherwise.

Lemma 8 Any algebra H ∈ BT is isomorphic to a subalgebra of Ĥ.

PROOF. If U(π(H)) = ∅ then π(H) = {0, 1} and the lemma follows from
Theorem 7.

If U(π(H)) 6= ∅, let σ be the mapping from H into Ĥ defined by σ(x) =
({U ∈ U(π(H)) : πt(x) ∈ U})t∈T . Then it follows from Theorem 7 and Stone’s
representation theorem for Boolean algebras that σ is a monomorphism. 2

The following Lemma is inspired by Exponentiation Theorems in (22, §2).

Lemma 9 For any set U and any finite poset T we have:
(
2U

)

T
≈ (2T)U.

PROOF. Let x : t ∈ T 7→ xt ∈ {0, 1}U be an element of
(
2U

)

T
and let ϕ a

mapping from U into 2T . For any t ∈ T , we treat xt as a subset of U , and for
any u ∈ U we treat ϕ(u) as an element of F(T ).

Consider the mapping
−→
λ : x 7→ −→x defined by: −→x (u) = {t ∈ T : u ∈ xt} for

any u ∈ U , and the mapping
←−
λ : ϕ 7→ ←−ϕ defined by:←−ϕ t = {u ∈ U : t ∈ ϕ(u)}

for any t ∈ T .

Since u ∈ xt ⇐⇒ t ∈ −→x (u),
−→
λ is an order monomorphism. Likewise,

←−
λ is also

an order monomorphism. Thus
−→
λ is an order isomorphism and consequently

a Heyting isomorphism since any order isomorphism preserves infinite joins.
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By definition of a product of algebras, for any t ∈ T , πt is defined on (2T )U

by: (πt(ϕ)) (u) = πt (ϕ(u)). Furthermore we have the following equivalences:
πt (−→x (u)) = T iff t ∈ −→x (u) iff u ∈ xt iff for any v ∈ T , u ∈ (πt(x))v iff
−−−→
πt(x)(u) = T . This yields that

−→
λ (πt(x)) = πt

(−→
λ (x)

)
and consequently, that

−→
λ is an isomorphism of T -Rough algebras. 2

The following theorem shows that there is a truth-table method of verifying
the truth or falsity of equations in a T -Rough algebra.

We shall denote by V (2T) the algebraic variety generated by the algebra 2T.

Theorem 10 BT = V (2T)

PROOF. Since 2T ∈ BT, we obviously have BT⊆V (2T). Conversely, if H ∈
BT then by Lemmas 8 and 9 we obtain that H is isomorphic to a subalgebra
of (2T)U. This yields that H ∈ V (2T). 2

Hence, an equation holds in any T -Rough algebra iff it holds in 2T. In par-
ticular, for T = {1, 2}, it is easy to check that the unary operation ∼ defined
by

∼ x = (x ∨ ¬x) ∧ ¬π1(x) (2)

is a De Morgan negation. Hence, if T = {1, 2}, then BT is the class of three
valued  Lukasiewicz algebras.

Let us denote by χ the unary operation defined by:

χ(x) =
∧

t∈T

πt(x) (3)

χ is a monadic operator on a Heyting algebra. Such algebraic structures have
been intensively studied by Bezhanishvili in (2). If T is the chain 1 ≤ ... ≤ k+1,
then χ = π1.

Corollary 11 BT is a discriminator variety.

PROOF. For any x ∈ 2T , χ(x) = 1 if x = 1 and χ(x) = 0 otherwise. This
yields that the ternary term: τ(x, y, z) = (x ∧ χ(x↔ y)) ∨ (z ∧ χ(x↔ y))
where x↔ y = (x→y) ∧ (y→x), is a discriminator term on 2T. 2
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It is known (3, Cor. 10.8, Ch. IV) that a finite algebra is primal iff it has a
discriminator term, only one automorphism (the identity map) and only one
subalgebra (itself). Let T be a poset with at least two elements. Since 2 is a
subalgebra of 2T and 2 6= 2T , it follows that BT is not a primal variety. This
is the main difference with plain semi-Post algebras introduced in (10).

3 Deductive Systems

In this section we give a description of BT lattices as Boolean products.

For any algebra A we shall denote by Cong(A) the set of congruences on A.
Let θ be a congruence, for any x ∈ A, we shall denote by θ(x) the equivalence
class of x. If A is a Heyting algebra (in particular a Boolean algebra), the
collection of filters of A will be denoted by F(A), i.e. F ∈ F(A) iff 1 ∈ F
and y ∈ F whenever x, x→y ∈ F .

In the sequel, T is a finite poset and H is an arbitrary T -Rough algebra. We
shall denote by H the universe of H.

Definition 12 A deductive system of H is a filter D ∈ F(H) such that for
any x ∈ D, χ(x) ∈ D. We shall denote by D(H) the collection of all deductive
systems of H.

3.1 Congruence Lattice

Next lemma shows that there is a bijection between congruences and deductive
systems of T -Rough algebras.

Lemma 13 For any θ ∈ Cong(H), θ(1) ∈ D(H). Conversely, if D ∈ D(H)
then the binary relation θD defined on H by: (x, y) ∈ θD ⇐⇒ x↔ y ∈ D is a
congruence on H such that θD(1) = D.

PROOF. Since H is a Heyting algebra, it is well known (32, §13, Ch 1) that
θ(1) is a filter. Moreover, since θ is a congruence on H, if (x, 1) ∈ θ then we
have (πt(x), πt(1)) ∈ θ for any t ∈ T . Since T is finite, it follows by Lemma 4
that χ(x) ∈ θ(1). This asserts that θ(1) is a deductive system.

Conversely, it is also well known that θD is a congruence with respect to
Heyting operations: ∧,∨,→, 0, 1 and θD(1) = D. Now assume that x→y ∈ D.
Then by definition of D, χ(x→ y) ∈ D. Therefore, for any t ∈ T , πt(x)→
πt(y) ∈ D since by axiom (p6) χ(x→ y) ≤ πt(x→ y) ≤ πt(x)→ πt(y). This
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fact permits to state that if (x, y) ∈ θD then (πt(x), πt(y)) ∈ θD for any t ∈ T .
Hence θD is a congruence on H. 2

It follows from Lemma 13 that the mapping θ ∈ Cong(H) 7→ θ(1) ∈ D(H) is
an order isomorphism and consequently that the lattice of congruences on H
is isomorphic to the lattice of deductive systems of H.

We denote by χ−1 the pullback mapping of χ.

Lemma 14 For any D ∈ D(H), D ∩ π(H) ∈ F(π(H)). Conversely, if F ∈
F(π(H)) then χ−1(F ) = {x ∈ H : χ(x) ∈ F} is a deductive system of H such
that χ−1(F ) ∩ π(H) = F .

PROOF. Obviously D ∩ π(H) ∈ F(π(H)) since π(H) is a subuniverse of H.

To prove that χ−1(F ) is a deductive system, it is sufficient to show that it is a
filter of H. Let F ∈ F(π(H)). Since χ is a monadic operator on H , F ⊆χ−1(F ).
In particular 1 ∈ χ−1(F ).

Assume that {χ(x), χ(x → y)} ⊆ F , then πt(x) ∈ F and by axiom (p6),
πt(x)→πt(y) ∈ F for any t ∈ T . Thus, since F is a filter of π(H), πt(y) ∈ F
for any t ∈ T . This yields that χ(y) ∈ F and completes the proof. 2

The main statement for representability theory connected with Boolean alge-
bras deals with congruence lattices.

Theorem 15 (Cong(H),⊆) ≈ (F(π(H)),⊆).

PROOF. It follows from Lemmas 13 and 14 that the mappings:

λθ : θ ∈ Cong(H) 7−→ θ(1) ∩ π(H) ∈ F(π(H)) (4)

λF : F ∈ F(π(H)) 7−→ θχ−1(F ) ∈ Cong(H) (5)

are order monomorphisms with respect to inclusion. 2

From Theorem 15, we obtain a Boolean product representation of algebras in
BT and a description of simple algebras. For an explicit definition of Boolean
products we refer the reader to (3, Ch IV, §8).
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Corollary 16 For any ultrafilter U ∈ U(π(H)), let H/U be the quotient al-
gebra H/θχ−1(U). Then the following statements hold:

(1) H/U is a simple algebra whenever U ∈ U(π(H)),
(2) the simple algebras of BT are the subalgebras of 2T,
(3) if H is not a simple algebra then the mapping H 7→ H/U is a represen-

tation as a Boolean product.

PROOF. Since the mapping λF defined by (5) in the proof of Theorem 15
is an order homomorphism, the set of maximal congruences of H is:

{θχ−1(U) : U ∈ U(π(H))}

This implies item 1 as well as the following equivalences, which prove item 2:
H is a simple algebra iff U(π(H)) = ∅ iff π(H) = {0, 1} iff by Theorem 7, H
is isomorphic to a subalgebra of 2T.

It follows that if H is not a simple algebra then Φ : H 7→ H/U is a represen-
tation as a subdirect product. Then it is easy to verify that Φ is a Boolean
representation where U(π(H)) is endowed with the Boolean space topology.
This shows item 3. 2

It follows from previous corollary that for any integer k, there are 2k simple
k-Rough algebras.

3.2 Weak deduction theorem

Following A. Monteiro (19, Th 3.9), we assert a weak deduction theorem that
is the algebraic counterpart of A. Nour’s theorem in (23, §3).

Theorem 17 Let H ∈ BT. For any D ∈ D(H) and h ∈ H, the deduction
system Dh generated by D ∪ {h} is the set: {x ∈ H : χ(h)→x ∈ D}.

PROOF. The theorem is a consequence of the deduction theorem for Boolean
algebras and of Lemma 14. Indeed, from Lemma 14 we obtain the following
equivalences for any D1, D2 ∈ D(H):

D1⊆D2⇐⇒D1 ∩ π(H)⊆D2 ∩ π(H) (6)

h ∈ D1⇐⇒χ(h) ∈ D1 ∩ π(H) (7)
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Then we have the following equalities:

Dh = χ−1 ({x ∈ π(H) : χ(h)→x ∈ D ∩ π(H)}) (8)

= {y ∈ H : χ(h)→χ(y) ∈ D} (9)

Observe that by axioms (p1),(p3) and distributivity we have for any b ∈ π(H),
χ(b ∨ y) = b ∨ χ(y). Moreover, in a Heyting algebra, if b is a complemented
element then b→y = ¬b ∨ y. Finally we obtain:

Dh = {y ∈ H : χ(χ(h)→y)) ∈ D} = {y ∈ H : χ(h)→y ∈ D}

2

4 Finite algebras

Given a finite poset T, this section is devoted to finite T -Rough algebras. We
apply results from previous §3 to obtain a description of finite algebras as
direct products of simple algebras.

If P = (P,≤) is a poset, for any p ∈ P and Q⊆P we denote by ↑Q p the set
{x ∈ Q : x ≥ p}. If B is a Boolean algebra, we denote by At(B) the set of its
atoms.

4.1 Direct products

Note that if H is a finite algebra in BT, then F(π(H)) = {↑π(H) b : b ∈ π(H)}

and χ−1
(
↑π(H) b

)
=↑H b for any b ∈ π(H). It follows that D(H) = {↑H b : b ∈

π(H)} and for any b ∈ π(H), (x, y) ∈ θ↑Hb iff x↔ y ≥ b where θ↑Hb is defined
in Lemma 13.

Lemma 18 If H is finite and not simple then for any a ∈ At(π(H)), the
algebra H/ ↑π(H) a is simple and:

H ≈
∏

a∈At(π(H))

H/ ↑π(H) a (10)

PROOF. The lemma is a consequence of the fact that the mapping λF de-
fined by (5) is an order isomorphism.

If H is not simple then At(π(H)) 6= ∅. Since for any a ∈ At(π(H)) we have
↑π(H) a ∈ U(π(B)), it follows that θ↑Ha is maximal and consequently H/ ↑π(H) a
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is simple. Moreover, θ↑π(H)a and θ↑π(H)¬a are factor congruences on H for any
a ∈ At(π(H)). This yields:

H ≈ H/ ↑π(H) a×H/ ↑π(H)¬a (11)

Let n = |At(π(H))|. On applying (11) n− 1 times we obtain (10). 2

Let H be a finite algebra in BT.

Definition 19 For any b ∈ π(H), b 6= 0, we shall denote by Hb the algebra
(H,∧,∨,→ b, (πt)t∈T , 0, b) where Hb = {x ∈ H : x ≤ b}, and→ b is the binary
operation defined by: x→ by = (x→y) ∧ b.

This Definition 19 is sound since it follows from axioms (p1) or (p2) that the
operators πt are isotone and consequently by axiom (p3) that for any b ∈ π(H),
x ≤ b implies πt(x) ≤ b.

Lemma 20 For any a ∈ At(π(H)), Ha ∈ BT and we have:

H/ ↑π(H) a ≈ Ha

PROOF. It is well known that the mapping ra : x 7→ x ∧ a is a Heyting
homomorphism from (H,∧,∨,→, 0, 1) onto (H,∧,∨,→ b, 0, b) (32, Ch IV, §8).
Moreover, it follows from axioms (p1) and (p3) that ra (πt(x)) = πt(x) ∧ a =
πt (ra(x)) and consequently that ra is a homomorphism of T -Rough algebras.
Finally, since r−1

a (b) =↑H a, we have Ha ≈ ra(H) ≈ H/ ↑π(H) a. 2

4.2 Finite free algebras

Given a finite poset T, we investigate finite free T -algebras.

Let H be an algebra and S a subset of its universe H . In the sequel we denote
by H(S) the subalgebra of H generated by S. Let T = (T,≤) be an arbitrary
finite poset. Since the variety BT is generated by the finite algebra 2T, it
follows that any free algebra in BT generated by a finite set is finite. For any
integer n, we denote by FT(n) the free algebra of BT with n generators.

Theorem 21 Let n be an integer, n ≤ 1, let G be a set such that |G| = n
and let 2G

T be the set of mappings from G into 2T . Then:

FT(n) ≈
∏

f∈2G

T

2T(f(G))

13



where 2T(f(G)) is the subalgebra of 2T generated by the image of G under f ,
i.e. {f(g) : g ∈ G}.

PROOF. Let B = π(FT (n)). It follows from (10) and Lemma 20 that

FT(n) ≈
∏

a∈At(B)

FT(n)/ ↑Ba (12)

For any a ∈ At(B), let ha be the natural homomorphism associated with θ↑Ba.
It follows from Corollary 16, that FT(n)/ ↑Ba can be identified with a subal-
gebra of 2T and ha with a mapping from FT(n) into 2T. This enables us to
write:

FT(n)/ ↑Ba ≈ 2T(ha(G))

Since for any a1, a2 ∈ At(B), a1 6= a2, there exists g ∈ G such that ha1(g) 6=
ha2(g), this yields that the mapping a ∈ At(B) 7→ ha ∈ 2G

T is injective and
consequently there exists a subset I⊆2G

T such that:

FT(n) ≈
∏

f∈I

2T(f(G))

We now show that I = 2G
T . Assume that f ∈ 2T (f(G)). Since FT (n) is free,

there exists a homomorphism f̂ : FT (n) −→ 2T such that for any g ∈ G,
f̂(g) = f(g). Since f̂(FT (n)) is the universe of a simple algebra, the kernel
of f̂ is a maximal congruence of FT (n). Since FT (n) is finite, it follows from
Theorem 15 that

∧
f̂−1(1) ∈ At(B). Let us denote by af this atom. It follows

from the determination principle (Lemma 5) that the mapping f 7→ af is
injective. Indeed, let f, h ∈ 2G

T and g ∈ G such that f(g) 6= h(g). Then
there exists t ∈ T such that πt(f(g)) 6= πt(h(g)) and consequently f̂ (πt(g)) 6=
ĝ (πt(g)). Since for any x ∈ 2T , πt(x) ∈ {0, 1}, this yields that f̂−1(1) 6= ĝ−1(1)
and consequently af 6= ag. This means that |I| ≥ |2G

T | and we conclude I = 2G
T .

2

Let us remark that if T is the chain 1 ≤ 2, then FT(n) = 2T

q × 2p where
p = 2n, q = 3n − p. Thus we obtain:

|FT (n)| = 33n−2n

× 22n

This is the formula proved by A. Monteiro for free 3-valued  Lukasiewicz alge-
bras with n generators (20).
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5 Propositional calculus

We now show the connection of T -Rough algebras with the propositional cal-
culus introduced and investigated by A. Nour in (23).

Let T be an arbitrary finite poset. We denote by F the set of function symbols
{∧,∨,→, (πt)t∈T , 0, 1} where ∧,∨,→are binary, πt are unary for any t ∈ T and
0, 1 are nullary. Let X be a set of distinct objects called variables and let
T(X) = (T (X),F) be the term algebra of type F over X (3, ch. II). Let θX

be the congruence on T(X) defined by

θX =
⋂
{θ ∈ Cong(T(X)) : T(X)/θ ∈ BT}

Then the BT-free algebra over X is the algebra T(X)/θX .

We denote by AI the set of terms that are axioms of the positive propositional
calculus of Hilbert and Bernays (32, Ch IX, §1), and by AT the finite set of
axioms defined by the following schemas (23):

(a1) πt(x ∨ y)↔ πt(x) ∨ πt(y) ;
(p2) πt(x ∧ y)↔ πt(x) ∧ πt(y) ;
(p3) πtπu(x)↔ πu(x) ;
(p4) ¬πt(0) ;
(p5) πt(x) ∨ ¬πt(x) ;
(p6) πt(x→y)↔

∧
v≥t (πv(x)→πv(y)) ;

(p7)
∧

v∈T πv(x)→x.

for any t, u, v ∈ T .

Let T h be the smallest subset of T (X) containing AI ∪AT such that:

(1) if {τ1, τ1→τ2}⊆T h then τ2 ∈ T h;
(2) if τ1 ∈ T h then πt(τ1) ∈ T h for any t ∈ T .

The results of A. Nour (23, §5) yield that for any τ ∈ T (X), τ ∈ T h iff the
algebra 2T satisfies the identity τ = 1.

Following Lindenbaum, we define an equivalence relation θL(X) on T (X) by:

(τ1, τ2) ∈ θL ⇐⇒ τ1 ↔ τ2 ∈ T h

The next corollary states that the Lindenbaum algebra derived from A. Nour’s
propositional calculus is a free T -Rough algebras.

Corollary 22 θL = θX.

15



PROOF. We have the following equivalences: (τ1, τ2) ∈ θX iff τ1 ↔ τ2 ∈
θX(1) iff the algebra 2T satisfies the identity τ1 ↔ τ2 = 1 by Theorem 10 iff
τ1 ↔ τ2 ∈ T h by A. Nour’s completeness theorem in (23, Cor 2). 2

6 k-Rough Sets

We start by introducing our notations and basic definitions on Rough Sets.
Following Pawlak (26), we shall call :

information system, a triple (Ob, Att, V al) where Ob and V al are sets and
Att is a finite collection of functions that map Ob into V al. The elements of
Ob are called objects and are often associated with the records of a relational
database. The elements of Att are called attributes. They correspond to the
fields of the database. Therefore V al is the set of values of the attributes.

approximation space, a frame (Ob, INDA), where A ⊆ Att and INDA is
an equivalence relation on Ob such that (x, y) ∈ INDA if the attributes in
A cannot distinguish between x and y. (i.e. For all (a1, a2) ∈ Att2 and all
x ∈ Ob we have a1(x) = a2(y)). If A is a singleton we simply write INDa

instead of IND{a}.

In the sequel we suppose that the set of values V al contains a distinguished
element NULL such that a(x) = NULL whenever the field corresponding to
a in the database is not defined for the record associated with the object x.
Moreover, for any subset of attributes A ∈ Att we denote by INDA(x) the
equivalence class of x : {y ∈ Ob : (x, y) ∈ INDA}.

We shall say that a collection C of (possibly empty) subsets of ℘(Ob) is a
partition of Ob if for any X, Y ∈ C, X ∩ Y = ∅ and

⋃
C = Ob. For each

subset A of attributes, we denote by CA the partition associated with INDA :
C = {INDA(x) : x ∈ Ob}. Conversely, let C be a partition of Ob, then for
any x ∈ Ob, we denote by C(x) the class X ∈ C such that x ∈ X. In other
words, we identify C with the natural map from Ob into C. Therefore we have
for every a ∈ Att, INDa = INDCa

.

In the rest of this section, we consider that C is a partition of Ob. Let B be the
Boolean algebra (℘(Ob),∩,∪,−, ∅, Ob) made of subsets of Ob and let B(C) be
the collection of set-union of equivalence classes:

B(C) =
{⋃
X : X ⊆C

}

It is worth mentioning that the algebra: B(C) = (B(C),∩,∪,−, ∅, Ob) is a
boolean sub-algebra of ℘(Ob).
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Let k be an integer. Following Ziarko in (35), we consider several usual ways of
approximating a subset X⊆Ob called the j-lower approximation for 1 ≤ j ≤ k
and the upper approximation for j = k + 1. They are defined respectively as:

fC
j (X) =

⋃
{
C(x) : |C(x) ∩X| ≥

|C(x)|

j

}
(13)

fC
k+1(X) =

⋃
{C(x) : C(x) ∩X 6= ∅} (14)

Note that for any 1 ≤ j ≤ k + 1 and X ∈ C, we have fC
j (X) = X. Since we

have fC
1 (X) =

⋃
{Y ∈ C : Y ⊆X}, fC

1 is the lower approximation operator L
considered by Pawlak.

According to Pawlak (26), a Rough Set of an approximation space (Ob, INDC)
is a pair (fC

1 (X), fC
k+1(X)) for some X⊆Ob.

Example 23 Let Ob be the set {a1, b1, b2, c1, c2, c3} and let C = {Ca, Cb, Cc}
a partition of Ob in three classes where Ca = {a1}, Cb = {b1, b2} and Cc =
{c1, c2, c3}. Then the collection of rough sets of the approximation space (Ob,
INDC) is the collection of pairs (X, Y ) ∈ ℘(Ob)2 such that X⊆Y and Ca⊆X
whenever Ca⊆Y .

We are now going to define k-Rough Sets which are special cases of α-Rough
Sets introduced in (35) to generalize Pawlak’s Rough Set concept.

Definition 24 Let X be a subset of Ob, for any integer k > 0 the k-Rough
Set generated by X is the sequence:

−→
X = (fC

i (X))1≤i≤k+1.

We denote by RS(C) the collection of all k-Rough Sets: RS(C) = {
−→
X : X ⊆

Ob}.

Since for an equivalence class X the sequence (fj(X)) is constant, this yields a
set-embedding of B(C) into k-rough sets. In the sequel we shall identify every

element X of B(C) with the constant sequence
−→
X = (X, ..., X).

Relationships between k-Rough representations can be modeled using HABO
operations defined on the lattice RS(C).

Definition 25 We denote by
−→
0 the k + 1-sequence (∅, ..., ∅) and by

−→
1 the

k + 1-sequence (Ob, ..., Ob). Let X, Y be two subsets of Ob,

(1) we define k + 1 unary operations πi on RS(C) by setting: πi(
−→
X ) =

−−−−→
fC

i (X)
for any 1 ≤ i ≤ k + 1.

(2) moreover we define three binary operations ∧,∨,→ by the following equal-
ities:
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−→
X ∧

−→
Y =

(
fC

i (X) ∩ fC
i (Y )

)

1≤i≤k+1
(15)

−→
X ∨

−→
Y =

(
fC

i (X) ∪ fC
i (Y )

)

1≤i≤k+1
(16)

−→
X→

−→
Y =




⋂

i≤j≤k+1

(
−fC

j (X) ∪ fC
j (Y )

)




1≤i≤k+1

(17)

Let X, Y ⊆Ob, we shall write
−→
X ≤

−→
Y whenever for any approximation oper-

ator fi we have : fC
i (X)⊆fC

i (Y )

Observe that for any C ∈ C,
−→
C ≤

−→
X iff C⊆fC

i (X) for any 1 ≤ i ≤ k + 1.

Lemma 26 RS(C) is closed under the operations ∧,∨,→ and πi for every
1 ≤ i ≤ k + 1.

PROOF. It is clear that RS(C) is closed under πi since πi(X) =
−−−−→
fC

i (X). We

shall prove that for any X, Y ⊆ Ob there exists Zop ⊆ Ob such that
−−→
Zop =

−→
X op

−→
Y where op ∈ {∧,∨,→}.

For every C ∈ C let:

C∧ =






X ∩ C if |X ∩ C| ≤ |Y ∩ C|

Y ∩ C otherwise
(18)

C∨ =






X ∩ C if |X ∩ C| ≥ |Y ∩ C|

Y ∩ C otherwise
(19)

C→=






C if
−→
C ≤

−→
X→

−→
Y

Y ∩ C otherwise
(20)

Then we can take :

Zop =
⋃
{Cop : C ∈ C} (21)

for every op ∈ {∧,∨,→}.

This is obvious except for op =→. In this case observe that :

C⊆
⋂

i≤j≤k+1

(
−fC

j (X) ∪ fC
j (Y )

)
(22)
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holds iff C ⊆ fC
j (Y ) whenever C ⊆ fC

j (X) and j ≥ i. Since C 6⊆ fC
i (X) yields

C 6⊆ fC
n (X) for every 1 ≤ n ≤ i, it follows that for all C ∈ C, (22) holds for

every 1 ≤ i ≤ k+1 or whenever C⊆fC
i (Y ). This shows that if for some C ∈ C,

−→
C 6≤

−→
X →

−→
Y then

−→
C ∧ (

−→
X →

−→
Y ) =

−→
C ∧

−→
Y =

−−−−→
C ∩ Y =

−→
C→ and proves (21)

for op =→. 2

We denote by HC the system:
(
RS(C),∧,∨,→, π1, ..., πk+1,

−→
0 ,
−→
1

)
.

The following corollary is straightforward.

Corollary 27 HC is a k-Rough algebra.

7 Application to Information Retrieval Systems

Following (1), an Information Retrieval (IR) model is a quadruple (D,Q,F , R)
where:

(1) D is a set composed of logical views for the documents in the collection.
(2) Q is a set composed of queries.
(3) F is a framework for modeling documents representations, queries, and

their relationships.
(4) R is a binary ranking function which associates a real number with a

query Xq ∈ Q and a document’s logical view Xd ∈ D.

Let us suppose that documents are indexed by a set Ob of key-words and that
there exists a classification C of these key-words into topics.

We consider the new IR model induced by:

(1) document logical views D and queries Q are subsets of Ob;
(2) the framework F is the algebra HC.

The rest of the section is devoted to the definition in this algebraic framework
of the ranking function R.

Let k be an integer and let K be the set of smaller integers {0, 1, ..., k}. The
following definition introduces the concept of fuzzy membership function (k-
membership function) corresponding to k-Rough sets following (26).

Definition 28 For any X⊆Ob, we define a k-membership function λX :
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C −→ K associated with
−→
X in the following way for any C ∈ C:

λX(C) =






0 if C ∩X = ∅

1 /min{j ∈ K : C⊆fj(X)} otherwise

We shall denote by λC the set {λX : X⊆Ob}.

Obviously there is a one-to-one correspondence between RS(C) and λC since
by definition for any X⊆Ob, C ∈ C and j ∈ K we have:

λX(C) ≥ 1/j ⇐⇒ C⊆fj(X)

k-membership functions can be extended to the operations between k-Rough
sets in the usual way for every X, Y ⊆Ob and C ∈ C:

(λX ∧ λY ) (C) = min{λX(C), λY (C)} (23)

(λX ∨ λY ) (C) = max{λX(C), λY (C)} (24)

(λX→λY ) (C) =






1 if λX(C) ≤ λY (C)

λY (C) otherwise
(25)

πi (λX) (C) =






1 if C⊆fC
i (X)

0 otherwise
(26)

We now suppose that Ob is a finite set. We define a measure on RS(C), by
analogy with finite measures on Boolean algebras and usual indices of dissim-
ilarity for categorical variables (5).

Definition 29 A finite measure on RS(C) is an isotone non negative real

valued unary function µ such that for any X, Y ⊆ Ob we have µ
(−→
X

)
= 0

whenever
−→
X =

−→
0 , µ

(−→
X ∨

−→
Y

)
= µ

(−→
X

)
+ µ

(−→
X

)
whenever

−→
X ∧

−→
Y =

−→
0 .

Moreover, we shall say that µ is normalized if µ
(−→

1
)

= 1 and it is positive if
−→
1 is the only element at which µ takes the value 1.

Definition 30 For any set U , we say that a non negative real valued binary
function d is a dissimilarity on U if for any V1, V2, V3⊆U , d(V1, V1) = 0 and
d(V1, V2) = d(V2, V1).

We remind the reader that if m is a finite normalized measure on a Boolean
algebra B, then the binary function defined by x, y 7→ 1 − m(x ↔ y) is a
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metric on B.

We shall now introduce a positive measure µC and a dissimilarity δC on RS(C).

We denote by
−→
X ↔

−→
Y the k-rough set:

(−→
X→

−→
Y

)
∧

(−→
Y →

−→
X

)
.

Definition 31 We denote by µC the application from RS(C) into the set of
real numbers defined for any X⊆Ob by:

µC

(−→
X

)
=

max
{
|Y | :

−→
Y =

−→
X, Y ⊆Ob

}

|Ob|

The proof of the following lemma is straightforward.

Lemma 32 µC is a normalized positive finite measure on RS(C) and the

real binary function δC defined for every X, Y ⊆ Ob by δC
(−→
X,
−→
Y

)
= 1 −

µC

(−→
X ↔

−→
Y

)
is a dissimilarity.

We shall now show how to compute the number µC

(−→
X

)
for any X⊆Ob.

Lemma 33 Let S be a subset of Ob and j an integer such that j < |S|. We
denote by ⌊S⌋j the integer n such that:

• n = |S| if j = 0,

• n = |S|
j
− 1 if j 6= 0 and |S| is a multiple of j,

• |S|
j
− 1 ≤ n ≤ |S|

j
otherwise

Then we have for any X⊆Ob:

µC(
−→
X ) =

∑ {
⌊C⌋1/λX (C)−1 : C ∈ C, C⊆fC

k+1(X)
}

|Ob|

Hence, we can define the ranking function R by setting:

R(Xq, Xd) = |Ob|.µC

(−→
Xq→

−→
Xd

)
+ µC

(−→
Xd→

−→
Xq

)

for any Xq ∈ Q and Xd ∈ D.

The value for µC

(−→
Xq→

−→
Xd

)
(i) is maximal if the relevant topics with regard

to query q are also relevant for document d. Thus the function R ranks these
documents at the top of the list. Conversely, the value of µC

(−→
Xd→

−→
Xq

)
(ii)

is maximal if all the topics that characterize document d are also relevant for
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query q. Thus two documents, d1, d2 will have the same value for (i), the R
function will use the value of (ii) to differentiate them.

This shows that HABO allow to formalize implicative relationships in the
sense of (9), between documents and queries as logical implications to which a
measure of uncertainty is associated such as in Rijsbergen (27) and Sebastiani
(29), but not in terms of conditional probability. Given two documents whose
terms overlap the same topics in a more or less similar manner, they will be
associated irrespective of whether or not they share common terms. Like in
(11) or in fuzzy IR (1, §2.6), our approach is basically an indirect way of
ranking documents as relevant documents, a promising compromise between
Boolean and Fuzzy IR.

8 Examples

We illustrate the basic elements of the algebraic structure of k-rough sets by
means of a small hierarchical classification system on computing methodolo-
gies specified in (12) with two levels (a unique class L1(t) and supra-class L2(t)
is given to each term t ∈ Ob). Table 1 gives the corresponding information
system HS = (Ob, Att, V al) where Ob is a set of 15 terms and Att = {L1, L2}.

HS hierarchical means that we have the functional dependency : L1→L2, thus
INDAtt = IND{L1,L2} = IND{L1} (L1 is a key of the database). However,
this is not compulsory and what follows remains correct for any Information
System by taking C = CA where A can be the whole set Att of attributes, or
any key of the database.

Then we have : CL1 = {A, B, C, D, E} and CL2 = {A ∪ B, C ∪D ∪ E} where
A = {a1, a2}, B = {b1, b2, b3}, C = {c1, ..., c6}, D = {d1, d2} and E = {e1, e2}
are five disjoint clusters of terms in table 1.

Table 2 shows three examples of Library entries in (12). Braced lists are asso-
ciated terms, and parentheses enclose summaries of the books.

It follows that in this classification system, each document di has associated
with it a set of index terms t1, ..., tn that capture the essence of it. Every
document then becomes synonymous with its set of terms. The terms, in turn,
are divided into clusters A, ..., E according to the topics to which they refer.

In keeping with the format of the k-Rough model described so far, we merge
the documents into the dependence spaces induced by the partitions CL1 and
CL2 of the set Ob of indexed terms. Then every set of terms associated with
a document defines a 2-Rough Set in each dependence space as described in
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Table 1
Example of hierarchical classification system

index term class supra-class

a1 : Algebraic algorithms Algorithms Algebraic Manipulations

a2 : Analysis of algorithms Algorithms Algebraic Manipulations

b1 : Evaluation strategies Languages and Systems Algebraic Manipulations

b2 : Nonprocedural languages Languages and Systems Algebraic Manipulations

b3 : Special purpose hardware Languages and Systems Algebraic Manipulations

c1 : Cartography Applications Artificial Intelligence

c2 : Games Applications Artificial Intelligence

c3 : Industrial Automation Applications Artificial Intelligence

c4 : Law Applications Artificial Intelligence

c5 : Medecine and Science Applications Artificial Intelligence

c6 : Office automation Applications Artificial Intelligence

d1 : Analogies Learning Artificial Intelligence

d2 : Concept learning Learning Artificial Intelligence

e1 : Manipulators Robotics Artificial Intelligence

e2 : Sensors Robotics Artificial Intelligence

Table 3.

These three documents share few terms in common, meanwhile d1 and d6

have the same 2-Rough approximation in (Ob, INDL2). We are now going
to compute the implications between these three documents in (Ob, INDL1).
This can easily be done using membership functions in Table 4.

Table 5 illustrates how the Heyting implication between two documents d1 and
d2 can be used in an query expansion process. Indeed, for every 1 ≤ i ≤ k,
the following formula based on the Heyting implication and on the Boolean
operators gives the topics (classes) that are 1/i-relevant to document d1 and
that are developed in document d2 :

πi(
−→
d1) ∧ π1(

−→
d1→

−→
d2)

It follows that the measure µ(
−→
d1→

−→
d2) should point out a document d2 which

could be interesting for any reader of d1. The values of this measure for the
three documents in the previous example are given in Table 6. By way of
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Table 2
Example of Library entries

d1 “Artificial Justice: Expert systems and Legal Consultation”. Fergus, W. W.

{Law, Evaluation strategies, Special purpose hardware}

(An evaluation of expert systems applied to the field of legal consultation).

d3 “Computer system review”. Aron and Cornick.

{Algebraic algorithms, Analysis of algorithms, Nonprocedural languages,

Cartography, Games, Office automation, Concept learning, Manipulators, Sensors}

(An encyclopedic review of computer systems technology).

d6 “Programming Heuristics and Heuristic Programming”. Enver, N.

{Nonprocedural languages , Special purpose hardware, Analogies, Concept learning}

(An exploration of the programming of intelligent systems with heuristic learning).

Table 3
2-Rough Sets generated by documents

X⊆Ob
−→
X in (Ob, INDL1) µCL1

(−→
X

) −→
X in (Ob, INDL2) µCL2

(−→
X

)

d1 (∅, B,B ∪C) 4
15 (∅, ∅, Ob) 6

15

d3 (A ∪ E,Ob−B,Ob) 11
15 (∅, Ob,Ob) 13

15

d4 (D,B ∪D,B ∪D) 4
15 (∅, ∅, Ob) 6

15

Table 4
Membership functions associated with documents in (Ob, INDL1)

X λX(A) λX(B) λX(C) λX(D) λX(E)

d1 0 1/2 1/3 0 0

d3 1 1/3 1/2 1/2 1

d6 0 1/2 0 1 0

example, this table shows that a reader of a technical book on programming
intelligent systems (d6) should be interested by the application of expert sys-
tems to legal consultation (d1), more than by the general encyclopedic review
(d3). Note that usual statistical symmetrical dissimilarity measures (5, p. 85)
would have ranked document d3 before d1.

Yet, another strategy for query expansion is to consider similar documents.
Table 6 gives the values of |Ob| × µC(

−→
di ↔

−→
dj ), for every i, j ∈ {1, 3, 6}. They

induce by definition the values of the dissimilarity δC between two documents
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Table 5
Implications between documents

−→
X→

−→
Y d1 d3 d6

d1
−→
1 (Ob−B,Ob−B,Ob) (A ∪D ∪ E,Ob− C,Ob− C)

d3 (B,B,B ∪ C)
−→
1

−−−−→
B ∪D

d6
−−−−−→
Ob−D (A ∪ C ∪ E,Ob−B,Ob)

−→
1

di and dj which is small whenever the two documents cover the same topics
with the same intensity. The table shows that document d1 is closest to d6

than to d3. This is because, like in Kulcynsky and Jaccard statistics (5, p. 85),

the computation of
−→
di ↔

−→
dj takes into account the number of disagreements

between two categorical variables.

Table 6
Implication measures and dissimilarities between documents

|Ob| × µC(
−→
Y →

−→
X ) |Ob| × µC(

−→
X ↔

−→
Y )

X\
Y d1 d3 d6

d1 15 13 8

d3 5 15 5

d6 13 12 15

X\
Y d1 d3 d6

d1 15 3 6

d3 3 15 3

d6 6 3 15

9 Related and future works

T -Rough algebras developed in this paper are special cases of finitely generated
varieties of Heyting algebras with operators that have been intensively inves-
tigated in universal algebra theory. Suitable and optimal representations have
been developed for Monadic Heyting Algebras (2), logics based on  Lukasiewicz-
Moisil algebras (16) in Kripke-style and relative-Stones Heyting algebras gen-
erated by finite chains (6) which have all many similarities with the k-Rough
algebras introduced in this paper. In a more general way, a Priestley style
duality theory has been developed for varieties of Heyting algebras (7) and
duality for bounded lattices with operators has been studied and applied to
the semantics of non classical logics in (31).

However, in this paper, we based the study of finite many valued algebraic
logics on the simple model of Heyting algebras of finite increasing partially
ordered sequences of subsets, following Moisil and Rasiowa tradition. We have
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generalized to T -Rough algebras the fundamental representation theorem al-
ready established in (10) for plain semi post algebras and for Symmetrical
Heyting Algebras with a finite order type of Operators in (15). We deduce
from this theorem that, given a poset T, the variety of T -Rough algebras is
generated by a finite algebra.

To illustrate the potential applications of this algebraic frame, we have intro-
duced an IR model that extends the clean and simple boolean model with
the functionality of partial matching. The basic idea, like in fuzzy IR, is to
expand the set of index terms in a query with related terms in the same topic.
Hence the model deals with the representation of classes whose boundaries are
not well defined like in fuzzy set theory. Meanwhile, the simplicity of our sys-
tem allows us to consider large collections of documents. Moreover the sound
algebraic formalism based on Heyting algebras with Boolean operators can in-
corporate new facts (close sentences) and rules (entailments) as they become
available and suggest a way to progress in the direction of a more sophisticated
question-answering system.
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